目錄七年級數學下冊北師大 七年級下冊數學課本內容 人教版七年級數學下冊目錄 七年級上冊數學 七年級下冊數學書答案
每一門科目都有自己的學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要講練的。下面是我給大家整理的一些七年級數學知識點的學習資料,希望對大家有所幫助。
七年級數學知識點歸納
變量之間的關系
一理論理解
1、若Y隨X的變化而變化,則X是自變量Y是因變量。
自變量是主動發生變化的量,因變量是隨著自變量的變化而發生變化廳斗蘆的量,數值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那么y與x的關系式為y=180-2x.
2、能確定變量之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間
二、列表法:采用數表相結合的形式,運用表格可以表示兩個變量之間的關系。列表時要選取能代表自變量的一些數據,并按從小到大的順序列出,再分別求出因變量的對應值。列表法的特點是直觀,可以直接從表中找出自變量與因變量的對應值,但缺點是具有局限性,只能表示因變量的一部分。
三.關系式法:關系式是利用數學式子來表示變量之間關系的等式,利用關系式,可以根據任何一個自變量的值求出相應的因變量的值,也可以已知因變量的值求出相應的自變量的值。
四、圖像注意:a.認真理解圖象的含義,注意選擇一個能反映題意的圖象;b.從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1.隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數語言描述也可:因變量y隨著自變量x的增加(大)而增加(大));
2.隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數語言描述也可:因變量y隨著自變量x的增加(大)而減小).
注意:如果在整個過程中事物的變化趨勢不一樣,可以采用分段描述.例如在什么范圍內隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等.
九、估計(或者估算)對事物的估計(或者估算)有三種:
1.利用事物的變化規律進行估計(或者估算).例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數-首數)/次數或相差年數)等等;
2.利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變量y的值;
3.利用關系式:首先求出關系式,然后直接代入求值即可.
初一銷嘩數學下冊知識點總結
一元一次方程的解
定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。
把方程的解代入原方程,等式左右兩邊相等。
13、解一元一次方程:
1.解一元一次方程的一般步驟
去分母、去括號、移項、合并同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。
2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號。
3.在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。
使方程逐漸轉化為ax=b的最簡形式體現化歸思想。
將ax=b系數化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。
14、一元一次方程的應用
1.一元一次方程解應用題的類型
(1)探索規律型問題;
(2)數字問題;
(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);
(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總扮帶量);
(5)行程問題(路程=速度×時間);
(6)等值變換問題;
(7)和,差,倍,分問題;
(8)分配問題;
(9)比賽積分問題;
(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).
2.利用方程解決實際問題的基本思路:
首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然后用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。
列一元一次方程解應用題的五個步驟
(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.
(2)設:設未知數(x),根據實際情況,可設直接未知數(問什么設什么),也可設間接未知數.
(3)列:根據等量關系列出方程.
(4)解:解方程,求得未知數的值.
(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.
初一數學方法技巧
我們怎樣預習呢?
曰:“先學習的目標:
(1)知道知識產生的背景,弄清知識形成的過程。
(2)或早或晚的知道知識的地位和作用:
(3)總結出認識問題的規律(或說出認識問題使用了以前的什么規律)。
再說具體的做法:(1)對概念的理解。數學具有高度的抽象性。通常要借助具體的東西加以理解。有時借助字面的含義:有時借助其他學科知識。有時借助圖形……理解概念的境界是意會。一定要在理解概念上下一番苦功夫后再做題。
(2)對公式定理的預習,公式定理是使用最多的“規律”的總結。如:完全平方公式,勾股定理等。往往公式的推導定理的證明蘊含著豐富的數學方法及相當有用的解題規律。如三角形內角平分線定理的證明。我們應當先自己推導公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對于例題及習題的處理見上面的(2)及下面的第五條。
七年級數學下冊知識點相關文章:
★初一數學下冊知識點歸納總結
★初一數學下冊知識點
★初一數學下冊基本知識點總結
★七年級下冊數學復習提綱
★初一下期數學知識點總結
★初中數學七年級下冊知識點提綱
★2021七年級下冊數學復習提綱
★七年級下數學知識點總結
★七年級數學下冊知識點及練習題
★人教版初一數學下冊知識點
知識的寬度、厚度和精度決定人的成熟度。每一個人比別人成功,只不過是多學了一點知識,多用了一點心而已。接下來我給大家分享關于數學七年級下冊知識,希望對大家有所幫助!
數學七年級下冊知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
圖片 圖片
三、同位角、內錯角、同旁內角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側)在兩條直線的上方,又在直線EF的同側,具有這種位置關系的兩個角叫同位角。如:∠1和∠5。
2.內錯角:(在兩條直線內部,位于第三條直線兩側)在兩條直線之間,又在直線EF的兩側,具有這種位置關系的兩個角叫內錯角。如:∠3和∠5。
3.同旁內角:(在兩條直線內部,位于第三條直線同側)在兩條直線之間,又在直線EF的同側,具有這種位置關系的兩個角叫同旁內角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內,不相交的兩條直線叫做平行線。)
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。(內錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。(同旁內角互補,兩直線平行)滲消
推論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質
(一)平行線的性質
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
3.兩條平行線被第三叢鬧知條直線所截,同旁內角互補。(兩直線平行,同旁內角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設、結論兩部分組成。
題設是已知事項;結論是由已知事項推出的事項。命題常寫成“如果??,那么??”的形式。具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論。
3.真命題:正確的命題,題設成立,結論一定成立。
4.假命題:錯誤彎擾的命題,題設成立,不能保證結論一定成立。
5.定理:經過推理證實得到的真命題。(定理可以做為繼續推理的依據)
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
數學七年級下冊知識2
平面直角坐標系
一、平面直角坐標系
有序數對
1.有序數對:用兩個數來表示一個確定的位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2.坐標:數軸(或平面)上的點可以用一個數(或數對)來表示,這個數(或數對)叫做這個點的坐標。
平面直角坐標系
1.平面直角坐標系:在平面內畫兩條互相垂直,并且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.X軸:水平的數軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數軸的交點叫做平面直角坐標系的原點。
對應關系:平面直角坐標系內的點與有序實數對一一對應。
坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
象限
1.象限:X軸和Y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;
第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規律
(1)平移規律:
點的平移規律
左右平移→縱坐標不變,橫坐標左減右加;
上下平移→橫坐標不變,縱坐標上加下減。
圖形的平移規律 找特殊點
(2)對稱規律
關于x軸對稱→橫坐標不變,縱坐標互為相反數;
關于y軸對稱→橫坐標互為相反數,縱坐標不變;
關于原點對稱→橫縱坐標都互為相反數。
(3)位置規律
各象限點的坐標符號:(注意:坐標軸上的點不屬于任何一個象限)
圖片
二、坐標方法的簡單應用
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去) 一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
數學七年級下冊知識3
不等式與不等式組
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、圖片、圖片、<、≠)表示大小關系的式子。
2.不等式的解:使不等式成立的未知數的值,叫不等式的解。
3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
不等式的性質:
性質1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質2:不等式的兩邊同加(減)同一個數(或式子),不等號的方向不變。如果a>b,那么a+c>b+c(不等式的可加性).
性質3: 不等式的兩邊同乘(除以)同一個正數,不等號的方向不變。不等式的兩邊同乘(除以)同一個負數,不等號的方向改變。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性質4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法則)
性質5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性質6:如果a>b>0,n∈N,n>1,那么an>bn,且.當0
二、一元一次不等式
1.一元一次不等式:含有一個未知數,未知數的次數是1的不等式。
2、不等式的解法:
步驟:去分母,去括號,移項,合并同類項,系數化為一;
注意:去分母與系數化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數,要考慮不等號的方向是否發生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
①若兩個未知數的解集在數軸上表示同向左,就取在左邊的未知數的解集為不等式組的解集,此乃“同小取小”
②若兩個未知數的解集在數軸上表示同向右,就取在右邊的未知數的解集為不等式組的解集,此乃“同大取大”
③若兩個未知數的解集在數軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃“相交取中
④若兩個未知數的解集在數軸上向背,那么不等式組的解集就是空集,不等式組無解。此乃“向背取空”不等式組的解集的確定方法(a>b)
數學七年級下冊知識點相關文章:
★初一數學下冊知識點
★初中數學七年級下冊知識點提綱
★七年級下數學知識點總結
★初一數學下冊知識點歸納總結
★七年級下冊數學復習提綱
★初一數學下冊基本知識點總結
★七年級下冊數學的知識點
★初一數學下冊知識點匯總
★初一下期數學知識點總結
★七年級數學下冊知識點總結
數學要考的知識點頌前有哪些呢?接下來是我為大家帶來的關于七年級數學下冊知識點總結,希望會給大家帶來幫助。
七年級數學下冊知識點總結(一)
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字“1”。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都野散清包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數最高的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
2、幾個整式相加減,關鍵是正確地運用去括號法則,然后準確合并同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運算法則:同底數冪相乘,底數不掘燃變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n = am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運算法則:冪的乘方,底數不變,指數相乘。(am)n =amn。
3、此法則也可以逆用,即:amn =(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運算法則”異同點
1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對于含有3個或3個以上的運算,法則仍然成立。
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n = am÷an(a≠0)。
十、零指數冪
1、零指數冪的意義:任何不等于0的數的0次冪都等于1,即:a0=1(a≠0)。
十一、負指數冪
1、任何不等于零的數的―p次冪,等于這個數的p次冪的倒數,即:
注:在同底數冪的除法、零指數冪、負指數冪中底數不為0。
十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其余字母連同它的指數不變,作為積的因式。
2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對于只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。
5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。
(二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。
2、運算時注意積的符號,多項式的每一項都包括它前面的符號。
3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合并同類項,從而得到最簡結果。
(三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數等于兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用“同號得正,異號得負”。
4、運算結果中有同類項的要合并同類項。
5、對于含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。
十三、平方差公式
1、(a+b)(a-b)=a2-b2,即:兩數和與這兩數差的積,等于它們的平方之差。
2、平方差公式中的a、b可以是單項式,也可以是多項式。
3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成
(a+b)?(a-b)的形式,然后看a2與b2是否容易計算。
十四、完全平方公式
七年級數學下冊知識點總結(二)
第二章平行線與相交線
一、平行線與相交線
平行線:在同一平面內,不相交的兩條直線叫做平行線。
若兩條直線只有一個公共點,我們稱這兩條直線為相交線。
二、余角與補角
1、如果兩個角的和是直角,那么稱這兩個角互為余角,簡稱為互余,稱其中一個角是另一個角的余角。
2、如果兩個角的和是平角,那么稱這兩個角互為補角,簡稱為互補,稱其中一個角是另一個角的補角。
3、互余和互補是指兩角和為直角或兩角和為平角,它們只與角的度數有關,與角的位置無關。
4、余角和補角的性質:同角或等角的余角相等,同角或等角的補角相等。
5、余角和補角的性質用數學語言可表示為:
6、余角和補角的性質是證明兩角相等的一個重要方法。
三、對頂角
1、兩條直線相交成四個角,其中不相鄰的兩個角是對頂角。
2、一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
3、對頂角的性質:對頂角相等。
4、對頂角的性質在今后的推理說明中應用非常廣泛,它是證明兩個角相等的依據及重要橋梁。
5、對頂角是從位置上定義的,對頂角一定相等,但相等的角不一定是對頂角。
四、垂線及其性質
1、垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
2、垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
五、同位角、內錯角、同旁內角
1、兩條直線被第三條直線所截,形成了8個角。
2、同位角:兩個角都在兩條直線的同側,并且在第三條直線(截線)的同旁,這樣的一對角叫做同位角。
3、內錯角:兩個角都在兩條直線之間,并且在第三條直線(截線)的兩旁,這樣的一對角叫做內錯角。
4、同旁內角:兩個角都在兩條直線之間,并且在第三條直線(截線)的同旁,這樣的一對角叫同旁內角。
5、這三種角只與位置有關,與大小無關,通常情況下,它們之間不存在固定的大小關系。
六、六類角
1、補角、余角、對頂角、同位角、內錯角、同旁內角六類角都是對兩角來說的。
2、余角、補角只有數量上的關系,與其位置無關。
3、同位角、內錯角、同旁內角只有位置上的關系,與其數量無關。
4、對頂角既有數量關系,又有位置關系。
七、平行線的判定方法
1、同位角相等,兩直線平行。
2、內錯角相等,兩直線平行。
3、同旁內角互補,兩直線平行。
4、在同一平面內,如果兩條直線都平行于第三條直線,那么這兩條直線平行。
5、在同一平面內,如果兩條直線都垂直于第三條直線,那么這兩條直線平行。
八、平行線的性質
1、兩直線平行,同位角相等。
2、兩直線平行,內錯角相等。
3、兩直線平行,同旁內角互補。
4、平行線的判定與性質具備互逆的特征,其關系如下:
在應用時要正確區分積極向上的題設和結論。
九、尺規作線段和角
1、在幾何里,只用沒有刻度的直尺和圓規作圖稱為尺規作圖。
2、尺規作圖是最基本、最常見的作圖方法,通常叫基本作圖。
3、尺規作圖中直尺的功能是:
(1)在兩點間連接一條線段;
(2)將線段向兩方延長。
(2)將線段向兩方延長。
4、尺規作圖中圓規的功能是:
(1)以任意一點為圓心,任意長為半徑作一個圓;
(2)以任意一點為圓心,任意長為半徑畫一段弧;
5、熟練掌握以下作圖語言:
(1)作射線××;
(2)在射線上截取××=××;
(3)在射線××上依次截取××=××=××;
(4)以點×為圓心,××為半徑畫弧,交××于點×;
(5)分別以點×、點×為圓心,以××、××為半徑作弧,兩弧相交于點×;
(6)過點×和點×畫直線××(或畫射線××);
(7)在∠×××的外部(或內部)畫∠×××=∠×××;
6、在作較復雜圖形時,涉及基本作圖的地方,不必重復作圖的詳細過程,只用一句話概括敘述就可以了。
(1)畫線段××=××;
(2)畫∠×××=∠×××;
七年級數學下冊知識點總結(三)
第三章變量之間的關系
一、變量、自變量、因變量
1、在某一變化過程中,不斷變化的量叫做變量。
2、如果一個變量y隨另一個變量x的變化而變化,則把x叫做自變量,y叫做因變量。
3、自變量與因變量的確定:
(1)自變量是先發生變化的量;因變量是后發生變化的量。
(2)自變量是主動發生變化的量,因變量是隨著自變量的變化而發生變化的量。
(3)利用具體情境來體會兩者的依存關系。
二、表格
1、表格是表達、反映數據的一種重要形式,從中獲取信息、研究不同量之間的關系。
(1)首先要明確表格中所列的是哪兩個量;
(2)分清哪一個量為自變量,哪一個量為因變量;
(3)結合實際情境理解它們之間的關系。
2、繪制表格表示兩個變量之間關系
(1)列表時首先要確定各行、各列的欄目;
(2)一般有兩行,第一行表示自變量,第二行表示因變量;
(3)寫出欄目名稱,有時還根據問題內容寫上單位;
(4)在第一行列出自變量的各個變化取值;第二行對應列出因變量的各個變化取值。
(5)一般情況下,自變量的取值從左到右應按由小到大的順序排列,這樣便于反映因變量與自變量之間的關系。
三、關系式
1、用關系式表示因變量與自變量之間的關系時,通常是用含有自變量(用字母表示)的代數式表示因變量(也用字母表示),這樣的數學式子(等式)叫做關系式。
2、關系式的寫法不同于方程,必須將因變量單獨寫在等號的左邊。
3、求兩個變量之間關系式的途徑:
(1)將自變量和因變量看作兩個未知數,根據題意列出關于未知數的方程,并最終寫成關系式的形式。
(2)根據表格中所列的數據寫出變量之間的關系式;
(3)根據實際問題中的基本數量關系寫出變量之間的關系式;
(4)根據圖象寫出與之對應的變量之間的關系式。
4、關系式的應用:
(1)利用關系式能根據任何一個自變量的值求出相應的因變量的值;
(2)同樣也可以根據任何一個因變量的值求出相應的自變量的值;
(3)根據關系式求值的實質就是解一元一次方程(求自變量的值)或求代數式的值(求因變量的值)。
四、圖象
1、圖象是刻畫變量之間關系的又一重要方法,其特點是非常直觀、形象。
2、圖象能清楚地反映出因變量隨自變量變化而變化的情況。
3、用圖象表示變量之間的關系時,通常用水平方向的數軸(又稱橫軸)上的點表示自變量,用豎直方向的數軸(又稱縱軸)上的點表示因變量。
4、圖象上的點:
(1)對于某個具體圖象上的點,過該點作橫軸的垂線,垂足的數據即為該點自變量的取值;
(2)過該點作縱軸的垂線,垂足的數據即為該點相應因變量的值。
(3)由自變量的值求對應的因變量的值時,可在橫軸上找到表示自變量的值的點,過這個點作橫軸的垂線與圖象交于某點,再過交點作縱軸的垂線,縱軸上垂足所表示的數據即為因變量的相應值。
(4)把以上作垂線的過程過來可由因變量的值求得相應的自變量的值。
5、圖象理解
(1)理解圖象上某一個點的意義,一要看橫軸、縱軸分別表示哪個變量;
(2)看該點所對應的橫軸、縱軸的位置(數據);
(3)從圖象上還可以得到隨著自變量的變化,因變量的變化趨勢。
五、速度圖象
1、弄清哪一條軸(通常是縱軸)表示速度,哪一條軸(通常是橫軸)表示時間;
2、準確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代表速度增加;
(2)水平的線:與水平軸(橫軸)平行的線,其代表勻速行駛或靜止;
(3)下降的線:從左向右呈下降狀的線,其代表速度減小。
六、路程圖象
1、弄清哪一條軸(通常是縱軸)表示路程,哪一條軸(通常是橫軸)表示時間;
2、準確讀懂不同走向的線所表示的意義:
(1)上升的線:從左向右呈上升狀的線,其代表勻速遠離起點(或已知定點);
(2)水平的線:與水平軸(橫軸)平行的線,其代表靜止;
(3)下降的線:從左向右呈下降狀的線,其代表反向運動返回起點(或已知定點)。
七年級數學下冊知識點總結(四)
第四章三角形
一、三角形概念
1、不在同一條直線上的三條線段首尾順次相接所組成的圖形,稱為三角形,可以用符號“Δ”表示。
2、頂點是A、B、C的三角形,記作“ΔABC”,讀作“三角形ABC”。
3、組成三角形的三條線段叫做三角形的邊,即邊AB、BC、AC,有時也用a,b,c來表示,頂點A所對的邊BC用a表示,邊AC、AB分別用b,c來表示;
4、∠A、∠B、∠C為ΔABC的三個內角。
二、三角形中三邊的關系
人教版七年級數學下冊主要包括相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組和數據的收集、整理與表述六章內容。下面我給大家分享一些七年級下數學知識點,希望能夠幫助大家,歡迎閱讀!
↓↓↓點擊獲取"七年級知識點"↓↓↓
★初中數學圓的知識點歸納
★怎樣快速記憶初一數學公式
★七年級英語必備知識點總結
★七年級語文知識點梳理
七年級下數學知識點1
第一章 相交線與平行線
一、知識框架
二、知識概念
1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內,不相交的兩條直線叫做平行線。
5.同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。
6.命題:判斷一件事情的語句叫命題。
7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
8.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
9.定理與性質
對頂角的性質:對頂角相等。
10垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
12.平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:棗鬧內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特征以及有關圖形平移變換的性質,利用平移設計一些優美的圖案.重點:垂線和它的性質,平行線的判定方法和它的性質,平移和它的性質,以及這些的組織運用.難點:探索平行線的條件和特征,平行線條件與特征的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。
七年級下數學知識點2
第一章 平面直角坐標系
一.知識框架
二.知識概念
1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3.橫軸、縱軸、銀巖梁原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,鋒運垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以后學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。
七年級下數學知識點3
第一章 三角形
一.知識框架
二.知識概念
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大于任何一個和它不相鄰的內角。
多邊形內角和公式:n邊形的內角和等于(n-2)·180°
多邊形的外角和:多邊形的內角和為360°。
多邊形對角線的條數:
(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。
第八章 二元一次方程組
一.知識結構圖
二、知識概念
1.二元一次方程:含有兩個未知數,并且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。
4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。
6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。
本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法.重點:二元一次方程組的解法,列二元一次方程組解決實際問題. 難點:二元一次方程組解決實際問題
七年級下數學知識點4
第九章 不等式與不等式組
一.知識框架
二、知識概念
1.用符號“<”“>”“≤ ”“≥”表示大小關系的式子叫做不等式。
2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
5.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。
7.定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型并應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。
七年級下數學知識點5
第十章 數據的收集、整理與描述
一.知識框架
二.知識概念
1.全面調查:考察全體對象的調查方式叫做全面調查。
2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。
3.總體:要考察的全體對象稱為總體。
4.個體:組成總體的每一個考察對象稱為個體。
5.樣本:被抽取的所有個體組成一個樣本。
6.樣本容量:樣本中個體的數目稱為樣本容量。
7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。
8.頻率:頻數與數據總數的比為頻率。
9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。
本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?fff14745aca9358ff875ff9aca1296b3"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();此書名為“知識不是力量”,目的不是要宣揚知識無用論,而是希望借此名重新思考學習的本質。下面我給大家分享一些七年級下冊數學的知識,希望能夠幫助大家,歡迎閱讀!
七年級下冊數學的知識1
相交線與平行線
一、相交線 兩條直線相交,形成4個角。
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。
①鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線。具有這種關系的兩個角,互為鄰補角。如:∠1、∠2。
②對頂角:兩個角有一個公共頂點,并且一個角的兩條邊,分別是另一個角的兩條邊的反向延長線,具有這種關系的兩個角,互為對頂角。如:∠1、∠3。
③對頂角相等。
二、垂線
1.垂直:山豎如果兩條直線相交成直角,那么這兩條直線互相垂直。
2.垂線: 垂直是相交的一種特殊情形,兩條直線垂直,其中一條直線叫做另一條直線的垂線。
3.垂足:兩條垂線的交點叫垂足。
4.垂線特點:過一點有且只有一條直線與已知直線垂直。
5.點到直線的距離: 直線外一點到這條直線的垂線段的長度,叫點到直線的距離。連接直線外一點與直線上各點的所有線段中,垂線段最短。
三、同位角、內錯角、同旁內角
兩條直線被第三條直線所截形成8個角。
1.同位角:(在兩條直線的同一旁,第三條直線的同一側)在兩條直線的上方,又在直線EF的同側,具有這種位置關系的兩個角叫同位角。如:∠1和∠5。
2.內錯角:(在兩條直線內部,位于第三條直線兩側)在兩條直線之間,又在直線EF的兩側,具有這種位置關系的兩個角叫內錯角。如:∠3和∠5。
3.同旁內角:(在兩條直型蠢線內部,位于第三條直線同側)在兩條直線之間,又在直線EF的同側,具有這種位置關系的兩個角叫同旁內角。如:∠3和∠6。
四、平行線及其判定
平行線
1.平行:兩條直線不相交。互相平行的兩條直線,互為平行線。a∥b(在同一平面內,不相交的兩條直線叫做平行逗租大線。)
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3.平行公理推論:平行于同一直線的兩條直線互相平行。如果b//a,c//a,那么b//c
平行線的判定:
1. 兩條平行線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(同位角相等,兩直線平行)
2. 兩條平行線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。(內錯角相等,兩直線平行)
3. 兩條平行線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。(同旁內角互補,兩直線平行)
推論:在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
平行線的性質
(一)平行線的性質
1.兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
2.兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
3.兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角相等)
(二)命題、定理、證明
1.命題的概念:判斷一件事情的語句,叫做命題。
2.命題的組成:每個命題都是題設、結論兩部分組成。
題設是已知事項;結論是由已知事項推出的事項。命題常寫成“如果??,那么??”的形式。具有這種形式的命題中,用“如果”開始的部分是題設,用“那么”開始的部分是結論。
3.真命題:正確的命題,題設成立,結論一定成立。
4.假命題:錯誤的命題,題設成立,不能保證結論一定成立。
5.定理:經過推理證實得到的真命題。(定理可以做為繼續推理的依據)
6.證明:推理的過程叫做證明。
平移
1.平移:平移是指在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移變換 (簡稱平移),平移不改變物體的形狀和大小。
2.平移的性質
①把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
②新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點。連接各組對應點的線段平行且相等。
七年級下冊數學的知識2
實數
一、平方根
1、平方根
(1)平方根的定義:如果一個數x的平方等于a,那么這個數x就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.
(2)開平方的定義:求一個數的平方根的運算,叫做開平方.開平方運算的被開方數必須是非負數才有意義。
(3)平方與開平方互為逆運算:±3的平方等于9,9的平方根是±3
(4)一個正數有兩個平方根,即正數進行開平方運算有兩個結果;一個負數沒有平方根,即負數不能進行開平方運算;0的平方根是0.
(7)平方根和算術平方根兩者既有區別又有聯系:
區別在于正數的平方根有兩個,而它的算術平方根只有一個;
聯系在于正數的正平方根就是它的算術平方根,而正數的負平方根是它的算術平方根的相反數。
三、實數
一、實數的概念及分類
無理數:像前面的很多數的平方根和立方根都是無限不循環小數,無限不循環小數又叫無理數。
實數:有理數和無理數統稱實數。
1、實數的分類
二、實數的倒數、相反數和絕對值
1、相反數
實數與它的相反數是一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
數a的相反數是—a,這里a表示任意一個實數。
2、絕對值
一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數,零的絕對值是0。
正數大于零,負數小于零,正數大于一切負數,兩個負數,絕對值大的反而小。
3、倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。
4. 實數與數軸上點的關系:
每一個無理數都可以用數軸上的一個點表示出來,
數軸上的點有些表示有理數,有些表示無理數,
實數與數軸上的點就是一一對應的,即每一個實數都可以用數軸上的一個點來表示;反過來,數軸上的每一個點都是表示一個實數。
三、科學記數法和近似數
1、有效數字
一個近似數四舍五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數字起到右邊精確的數位止的所有數字,都叫做這個數的有效數字。
2、科學記數法
把一個數寫做±a×10n的形式,其中1≤a<10,n是整數,這種記數法叫做科學記數法。
四、實數大小的比較
1、數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。
2、實數大小比較的幾種常用方法
(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。
(2)求差比較:設a、b是實數,
七年級下冊數學的知識3
平面直角坐標系
一、平面直角坐標系
有序數對
1.有序數對:用兩個數來表示一個確定的位置,其中兩個數各自表示不同的意義,我們把這種有順序的兩個數組成的數對,叫做有序數對,記作(a,b)
2.坐標:數軸(或平面)上的點可以用一個數(或數對)來表示,這個數(或數對)叫做這個點的坐標。
平面直角坐標系
1.平面直角坐標系:在平面內畫兩條互相垂直,并且有公共原點的數軸。這樣我們就說在平面上建立了平面直角坐標系,簡稱直角坐標系。
2.X軸:水平的數軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數軸的交點叫做平面直角坐標系的原點。
對應關系:平面直角坐標系內的點與有序實數對一一對應。
坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
象限
1.象限:X軸和Y軸把坐標平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標的特點:
(1)x軸上的點的縱坐標為零;y軸上的點的橫坐標為零。
(2)第一、三象限角平分線上的點橫、縱坐標相等;
第二、四象限角平分線上的點橫、縱坐標互為相反數。
(3)在任意的兩點中,如果兩點的橫坐標相同,則兩點的連線平行于縱軸;如果兩點的縱坐標相同,則兩點的連線平行于橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規律
(1)平移規律:
點的平移規律
左右平移→縱坐標不變,橫坐標左減右加;
上下平移→橫坐標不變,縱坐標上加下減。
圖形的平移規律 找特殊點
(2)對稱規律
關于x軸對稱→橫坐標不變,縱坐標互為相反數;
關于y軸對稱→橫坐標互為相反數,縱坐標不變;
關于原點對稱→橫縱坐標都互為相反數。
(3)位置規律
二、坐標方法的簡單應用
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
用坐標表示地理位置的過程:
1.建立坐標系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據具體問題確定適當的比例尺,在坐標軸上標出單位長度。
3.在坐標平面內畫出這些點,寫出各點的坐標和各個地點的名稱。
用坐標表示平移
在平面直角坐標系內,如果把一個圖形各個點的橫坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標都加(或減去)一個正數a,相應的新圖形就把原圖形向上(下)平移a個單位長度。
七年級下冊數學的知識點相關文章:
★初一數學下冊知識點
★七年級數學下冊知識點總結
★七年級數學下冊知識點歸納
★人教版初一數學下冊知識點復習總結備戰中考
★初一下期數學知識點總結
★2017年七年級下冊數學知識點
★初一下冊數學重要知識點
★人教版七年級下冊數學復習提綱
★初一數學下冊基本知識點總結