目錄高中物理知識點匯總最全筆記 高中物理必考知識點總結 高中物理概念題 高中物理都學哪些知識 高中物理536個知識點
高中階段
力學:位移、速度、加速度是運動學中的基本概念;力、功、蔽賀能量動力學中的基本概念
電學:電場強度、電勢、電勢差是電場中的基宏團派本或叢概念;電流、電阻、電動勢、電壓等是電路中的基本概念
高中物理學習中掌握重點知識點是物理 學習 方法中最有效的一種,下面給大家分享一返凳些高中物理知識點總結,希望對大家有所幫助。
高中物理知識點總結1
沖量與動量(物體的受力與動量的變化)1.動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}
3.沖量:I=Ft {I:沖量(N?s),F:恒力(N),t:力的作用時間(s),方向由F決定}
4.動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}
5.動量守恒定律:p前總=p后總或p=p’?也可以是m1v1+m2v2=m1v1?+m2v2?
6.彈性碰撞:Δp=0;ΔEk=0 {即的動量和動能均守恒}
7.非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}
8.完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰后連在一起成一整體}
9.物體m1以v1初速度與靜止的物體m2發生彈性正碰:
v1?=(m1-m2)v1/(m1+m2) v2?=2m1v1/(m1+m2)
10.由9得的推論-----等質量彈性正碰時二者交換速度(動能守恒、動量守恒)
11.子彈m水平速度vo射入靜止置于水平光滑地面的長木塊M,并嵌入其中一起運動時的機械能損失
E損=mvo2/2-(M+m)vt2/2=fs相對 {vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}
注:
(1)正碰又叫對心碰撞,速度方向在它們“中心”的連線上;
(2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數運算;
(3)動量守恒的條件:合外力為零或不受外力,則動量守恒(碰撞問題、爆炸問題、反沖問題等);
(4)碰撞過程(時間極短,發生碰撞的物體構成的)視為動量守恒,原子核衰變時動量守恒;
(5)爆炸過程視為動量守恒,這時化學能轉化為動能,動能增加;(6)其它相關內容:反沖運動、火箭、航天技術的發展和宇宙航行〔見第一冊P128〕。
高中物理知識點總結2
勻變速直線運動的規律及其應用:
1、定義:在任意相等的時間內速度的變化都相等的直線運動
2、勻變速直線運動的基本規律
(1)任意兩個連續相等的時間T內的位移之差為恒量
(2)某段時間內時間中點瞬時速度等于這段時間內的平均速度
4、初速度為零的勻加速直線運動的比例式(2)初速度為零的勻變速直線運動中的幾個重要結論
①1T末,2T末,3T末……瞬時速度之比為:
v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n
②1T內,2T內,3T內……位移之比為:
x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n-1)
③第一個T內,第二個T內,第三個T內……第n個T內的位移之比為:
xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2
④通過連續相等的位移所用時間之比為:
易錯現象:
1、在一系列的公式中,不注意的v、a正、負。
2、紙帶的處理,是這部分的重點和難點,也是易錯問題。
3、濫用初速度為零的勻加速直線運動的特殊公式。
高中物理知識點總結3
運動學的基本概念1、參考系:描述一個物體的運動時,選來作為標準的的另外的物體。
運動是絕對的,靜止是相對的。一個物體是運動的還是靜止的,都是相對于參考系在而言的。
參考系的選擇是任意的,被選為參考系的物體,我們假定它是靜止的。選擇不同的物體作為參考系,可能得出不同的結論,但選擇時要使運動的描述盡量的簡單。
通常以地面為參考系。
2、質點:
①定義:用來代替物體的有質量的點。質點是一種理想化的模型,是科學的抽象。
②物體可看做質點的條件:研究物體的運動時,物肆基體的大小和形狀對研究結果的影響可漏雹旅以忽略。且物體能否看成質點,要具體問題具體分析。
③物體可被看做質點的幾種情況:
(1)平動的物體通常可視為質點.
(2)有轉動但相對平動而言可以忽略時,也可以把物體視為質點.
(3)同一物體,有時可看成質點,有時不能.當物體本身的大小對所研究問題的影響不能忽略時,不能把物體看做質點,反之,則可以.
注(1)不能以物體的大小和形狀為標準來判斷物體是否可以看做質點,關鍵要看所研究問題的性質.當物體的大小和形狀對所研究的問題的影響可以忽略不計時,物體可視為質點.
(2)質點并不是質量很小的點,要區別于幾何學中的“點”.
3、時間和時刻:
時刻是指某一瞬間,用時間軸上的一個點來表示,它與狀態量相對應;時間是指起始時刻到終止時刻之間的間隔,用時間軸上的一段線段來表示,它與過程量相對應。
4、位移和路程:
位移用來描述質點位置的變化,是質點的由初位置指向末位置的有向線段,是矢量;
路程是質點運動軌跡的長度,是標量。
5、速度:
用來描述質點運動快慢和方向的物理量,是矢量。
(1)平均速度:是位移與通過這段位移所用時間的比值,其定義式為 ,方向與位移的方向相同。平均速度對變速運動只能作粗略的描述。
(2)瞬時速度:是質點在某一時刻或通過某一位置的速度,瞬時速度簡稱速度,它可以精確變速運動。瞬時速度的大小簡稱速率,它是一個標量。
6、加速度:用量描述速度變化快慢的的物理量。
加速度是矢量,其方向與速度的變化量方向相同(注意與速度的方向沒有關系),大小由兩個因素決定。
易錯現象
1、忽略位移、速度、加速度的矢量性,只考慮大小,不注意方向。
2、混淆速度、速度的增量和加速度之間的關系。
高中物理知識點總結4
1、電場
兩種電荷、電荷守恒定律、元電荷:(e=1.60×10-19C);帶電體電荷量等于元電荷的整數倍。
庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}。
2、磁場
磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m2m。
安培力F=BIL;(注:L⊥B) {B:磁感應強度(T),F:安培力(F),I:電流強度(A),L:導線長度(m)}。
3、交變電流(正弦式交變電流)
電壓瞬時值e=Emsinωt 電流瞬時值i=Imsinωt;(ω=2πf)。
電動勢峰值Em=nBSω=2BLv 電流峰值(純電阻電路中)Im=Em/R總。
高中物理知識點總結歸納相關文章:
★高中物理復習知識點提綱歸納總結
★高中物理知識考點整理
★最新高中物理知識點總結
★高中物理知識點匯總基礎歸納
★高中物理力學重點知識點歸納庫
★高中物理知識點整理大全
★高中物理知識點總結
★高中會考物理知識點總結歸納
★高中物理運動學知識點總結
★高中物理考點整理歸納
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(hm, s); })();一、電場基本規律
1、庫侖定律
(1)定律內容:真空中兩個靜止點電荷之間的相互作用力,與它們的電荷量的乘積成正比,與它們的距離的平方成反比,作用力的方向在它們的連線上。
(2)表達式:k=9.0×109N?m2/C2——靜電力常量
(3)適用條件:真空中靜止的點電荷。
2、電荷守恒鏈燃定律:電荷既不會創生,也不會消滅,它只能從一個物體轉移到另一個物體,或者從物體的一部分轉移到另一部分,在轉移過程中,電荷的總量保持不變。
(1)三種帶電方式:摩擦起電,感應起電,接觸起電。
(2)元電荷:最小的帶電單元,任何帶電體的帶電量都是元電荷的整數倍,e=1.6×10-19C——密立根測得e的值。
二、電場能的性質
1、電場能的基本性質:電荷在電場中移動,電場力要對電荷做功。
2、電勢φ
(1)定義:電荷在電場中某一點的電勢能Ep與電荷量的比值。
(2)定義式:φ——單位:伏(V)——帶正負號計
(3)特點:
1、電勢具有相對性,相對參考點而言。但電勢之差與參考點的選擇無關。
2、電勢一個標量,但是它有正負,正負只表示該點電勢比參考點電勢高,還是低。
3、電勢的大小由電場本身決定,與Ep和q無關。
4、電勢在數值上等于單位正電荷由該點移動到零勢點時電場力所做的功。
(4)電勢高低的判斷方法○1根據電場線判斷:沿著電場線電勢降低。φA>φB○2根據電勢能判斷:
正電荷:電勢能大,電勢高;電勢能小,電勢低。
負電荷:電勢能大,電勢低;電勢能小,電勢高。
結論:只在電場力作用下,靜止的電荷從電勢能高的地方向電勢能低的地方運動。
3、電勢能E
(1)定義:電荷在電場中,由于電場和電荷間的相互作用,由位置決定的能量。電荷在某點的電勢能等于電場力把電荷從該點移動到零勢能位置時所做的功。
(2)定義式:——帶正負號計算(3)特點:
1、電勢能具有相對性,相對零勢能面而言,通常選大地或無窮遠處為零勢能面。
2、電勢能的變化量△Ep與零勢能面的選擇無關。
4、電勢差UAB
(1)定義:電場中兩點間的電勢之差。也叫電壓。
(2)定義式:UAB=φA-φB(3)特點:
○1電勢差是標量,但是卻有正負,正負只表示起點和終點的電勢誰高誰低。
若UAB>0,則UBA<0。
○2單位:伏○3電場中兩點的電勢差是確定的,與零勢面的選擇無關○4U=Ed勻強電場中兩點間的電勢差計算公式。——電勢差與電場強度之間的關系。
5、靜電平衡狀態
(1)定義:導體內不再有電荷定向移動的穩定狀態
(2)特點○1處于靜電平衡狀態的導體,內部場強處處為零。
○1感應電荷在導體內任何位置產生的電場都等于外電場在該處場強的大小相等,方向相反。
○2處于靜電平衡狀態的整個導體是個等勢體,導體表面是個等勢面。
○3電荷只分布在導體的外表面,在導體表面的分布與導體表面的彎曲程度有關,越彎曲,電荷分布越多。
6、電場力做功WAB
(1)電場力做功的特點:電場力做功與路徑無關,只與初末位置有關,即與初末位置的電勢差有關。
(2)表達式:WAB=UABq—帶正負號計算(適用于任何電場)WAB=Eqd—d沿電場方向的距離。——勻強電場(3)電場力做功與電勢能的關系WAB=-△Ep=EpA-EPB結論:電場力做正功,電勢能減少電場力做負功,電勢能增加
7、等勢面:
(1)定義:電勢相等的點構成的面。
(2)特點:
○1等勢面上各點電勢相等,在等勢面上圓喊移動電荷,電場力不做功。
○2等勢面與電場線垂直○
3兩等勢面不相交○
4等勢面的密集程度表示場強的大小:疏弱密強。
○5畫等勢面時,相鄰等勢面間的電勢差相等。
(3)判斷電場線上兩點間的電勢差的大小:靠近場源(場強大)的兩間的電勢差大于遠離場源(場強小)相等距離兩點間的電勢差。
三、電場力的性質
1、電場的基本性質:電場對放入其中電荷有力的作用。
2、電場強度E
(1)定義:電荷在電場中某點受到的電場力F與電荷的帶電量q的比值,就叫做該點的電場強度。
(2)定義式:E與F、q無關,只由電場本身決定。
3)電場強度是矢量:大小:單位電荷受到的電場力。
方向:規定正電荷受力方向,負電荷受力與E的方向相反。
(4)單位:N/C,V/m1N/C=1V/m
(5)其他的電場強度公式○1點電荷的場強公式:——Q場源電荷○2勻強電場場強棚腔虛公式:——d沿電場方向兩點間距離。
(6)場強的疊加:遵循平行四邊形法則
3、電場線
(1)意義:形象直觀描述電場強弱和方向理性模型,實際上是不存在的
(2)電場線的特點:
○1電場線起于正(無窮遠),止于(無窮遠)負電荷
○2不封閉,不相交,不相切
○3沿電場線電勢降低,且電勢降低最快。一條電場線無法判斷場強大小,可以判斷電勢高低。
○4電場線垂直于等勢面,靜電平衡導體,電場線垂直于導體表面
(3)幾種特殊電場的電場線四、應用——帶電粒子在電場中的運動(平衡問題,加速問題,偏轉問題)
1、基本粒子不計重力,但不是不計質量,如質子,電子,α粒子,氕,氘,氚帶電微粒、帶電油滴、帶電小球一般情況下都要計算重力。
2、平衡問題:電場力與重力的平衡問題。
mg=Eq3、加速問題
(1)由牛頓第二定律解釋,帶電粒子在電場中加速運動(不計重力),只受電場力Eq,粒子的加速度為a=Eq/m,若兩板間距離為d,則
(2)由動能定理解釋,可見加速的末速度與兩板間的距離d無關,只與兩板間的電壓有關,但是粒子在電場中運動的時間不一樣,d越大,飛行時間越長。
3、偏轉問題——類平拋運動在垂直電場線的方向:粒子做速度為v0勻速直線運動。
在平行電場線的方向:粒子做初速度為0、加速度為a的勻加速直線運動帶電粒子若不計重力,則在豎直方向粒子的加速度帶電粒子做類平拋的水平距離,若能飛出電場水平距離為L,若不能飛出電場則水平距離為x帶電粒子飛行的時間:t=x/v0=L/v0——————○1粒子要能飛出電場則:y≤d/2————————
○2粒子在豎直方向做勻加速運動:———
○3粒子在豎直方向的分速度:——————
○4粒子出電場的速度偏角:——————
○5由○1○2○3○4○5可得:
飛行時間:t=L/vO豎直分速度:
側向偏移量:偏向角:
飛行時間:t=L/vO側向偏移量:y’=偏向角:
在這種情況下,一束粒子中各種不同的粒子的運動軌跡相同。即不同粒子的側移量,偏向角都相同,但它們飛越偏轉電場的時間不同,此時間與加速電壓、粒子電量、質量有關。
如果在上述例子中粒子的重力不能忽略時,只要將加速度a重新求出即可,具體計算過程相同。
五、電容器及其應用
1、電容器充放電過程:(電源給電容器充電)充電過程S-A:電源的電能轉化為電容器的電場能放電過程S-B:電容器的電場能轉化為其他形式的能
2、電容(1)物理意義:表示電容器容納電荷本領的物理量。
(2)定義:電容器所帶電量Q與電容器兩極板間電壓U的比值就叫做電容器的電容。
(3)定義式:——是定義式不是決定式——是電容的決定式(平行板電容器)
(4)單位:法拉F,微法μF,皮法pF1pF=10-6μF=10-12F
(5)特點:
○1電容器的帶電量Q是指一個極板帶電量的絕對值。
○2電容器的電容C與Q和U無關,只由電容器本身決定。
○3在有關電容器問題的討論中,經常要用到以下三個公式和○3的結論聯合使用進行判斷○4電容器始終與電源相連,則電容器的電壓不變。電容器充電完畢,再與電源斷開,則電容器的帶電量不變。
一、定義:力是物體之間的相互作用。 理解要點: (
1) 力具有物質性:力不能離開物體而存在。
說明:①對某一物體而言,可能有一個或多個施力物體。 ②并非先有施力物體,后有受力物體 (
2)力具有相互性:一個力總是關聯著兩個物體,施力物體同時也是受力物體,受力物體同時也是施力物 體。 說明:①相互作用的物體可以直接接觸,也可以不接觸。 ②力的大小用測力計測量。
3)力具有矢量性:力不僅有大小,也有方向。
4)力的作用效果:使物體的形狀發生改變;使物體的運動狀態發生變化。
5)力的種類:
①根據力的性質命名:如重力、彈力、摩擦力、分子力、電磁力、核力等。
②根據效果命名:如壓力、拉力、動力、阻力、向心力、回復力等。 說明:根據效果命名的,不同名稱的力,性質可以相同;同一名稱的力,性質可以不同。
二、重力
定義:由于受到地球的吸引而使物體受到的力叫重力。
說明:①地球附近的物體都受到重力作用。
②重力是由地球的吸引而產生的,但不能說重力就是地球的吸引力。
③重力的施力物體是地球。
④在兩極時重力等于物體所受的萬有引力,在其它位置時不相等。
1)重力的大小:G=mg
說明:①在地球表面上不同的地方同一物體的重力大小不同的,緯度越高,同一物體的重力越大,因而同 一物體在兩極比在赤道重力大。
②一個物體的重力不受運動狀態的影響,與是否還受其它力也無關系。
③在處理物理問題時,一般認為在地球附近的任何地方重力的大小不變。
2) 重力的方向:豎直向下(即垂直于水平面)
說明:①在兩極與在赤道上的物體,所受重力的方向指向地心。 ②重力的方向不受其它作用力的影響,與運動狀態也沒有關系。
3)重心:物體所受重力的作用點。
重心的確定:
①質量分布均勻。物體的重心只與物體的形狀有關。形狀規則的均勻物體,它的重心就在幾 何中心上。
②質量分布不均勻的物體的重心與物體的形狀、質量分布有關。
③薄板形物體的重心,可用懸掛法確定。
說明:①物體的重心可在物體上,也可在物體外。
②重心的位置與物體所處的位置及放置狀態和運動狀態無關。
③引入重心概念后,研究具體物體時,就可以把整個物體各部分的重力用作用于重心的一個力來表 示,于是原來的物體就可以用一個有質量的點來代替。 三、彈力 (
1) 形變:物體的形狀或體積的改變,叫做形變。
說明:①任何物體都能發生形變,不過有的形變比較明顯,有的形變及其微小。
②彈性形變:撤去外力后能恢復原狀的形變,叫做彈性形變,簡稱形變。
2)彈力:發生形變的物體由于要恢復原狀對跟它接觸的物體會產生力的作用,這種力叫彈力。
說明:①彈力產生的條件:接觸;彈性形變。
②彈力是一種接觸力,必存在于接觸的物體間,作用點為接觸點。
③彈力必須產生在同時形變的兩物體間。
④彈力與彈性形變同時產生同時消失。 (
3)彈力的方向:與作用在物體上使物體發生形變的外力方向相反。
幾種典型的產生彈力的理想模型:
① 輕繩的拉力(張力)方向沿繩收縮的方向。注意桿的不同。
② 點與平面接觸,彈力方向垂直于平面;點與曲面接觸,彈力方向垂直于曲面接觸點所在切面。
③ 平面與平面接觸,彈力方向垂直于平面,且指向受力物體;球面與球面接觸,彈力方向沿兩球球心連線 方向,且指向受力物體。
4)大小:彈簧在彈性限度內遵循胡克定律 F=kx,k 是勁度系數,表示彈簧本身的一種屬性,k 僅與彈簧 的材料、粗細、長度有關,而與運動狀態、所處位置無關。其他物體的彈力應根據運動情況,利用平衡條 件或運動學規律計算。
四、摩擦力 :
1) 滑動摩擦力:一個物體在另一個物體表面上相當于另一個物體滑動的時候,要受到另一個物體阻礙 它相對滑動的力,這種力叫做滑動摩擦力。
說明:①摩擦力的產生是由于物體表面不光滑造成的。
②摩擦力具有相互性。
滑動摩擦力的產生條件:A.兩個物體相互接觸;B.兩物體發生形變;C.兩物體發生了相對滑動;D.接觸 面不光滑。
2),滑動摩擦力的方向:總跟接觸面相切,并跟物體的相對運動方向相反。
說明:①“與相對運動方向相反”不能等同于“與運動方向相反”
②滑動摩擦力可能起動力作用,也可能起阻力作用。滑動摩擦力的大小:F=FN
說明:①FN 兩物體表面間的壓力,性質上屬于彈力,不是重力。應具體分析。
② 與接觸面的材料、接觸面的粗糙程度有關,無單位。
③滑動摩擦力大小,與相對運動的速度大小無關。
3)、作用效果:總是阻礙物體間的相對運動,但并不總是阻礙物體的運動。
1)、 滾動摩擦:一個物體在另一個物體上滾動時產生的摩擦,滾動摩擦比滑動摩擦要小得多。
2)靜摩擦力:兩相對靜止的相接觸的物體間,由于存在相對運動的趨勢而產生的摩擦力。 說明:靜摩擦力的作用具有相互性。
1、靜摩擦力的產生條件:A.兩物體相接觸;B.相接觸面不光滑;C.兩物體有形變;D.兩物體有相對運動趨 勢。
2、靜摩擦力的方向:總跟接觸面相切,并總跟物體的相對運動趨勢相反。
說明:①運動的物體可以受到靜摩擦力的作用。
②靜摩擦力的方向可以與運動方向相同,可以相反,還可以成任一夾角 θ。
③靜摩擦力可以是阻力也可以是動力。
靜摩擦力的大小:兩物體間的靜摩擦力的取值范圍 ,0<F≤Fm,其中 Fm 為兩個物體間的最大靜摩擦力。 靜摩擦力的大小應根據實際運動情況,利用平衡條件或牛頓運動定律進行計算。
說明:①靜摩擦力是被動力,其作用是與使物體產生運動趨勢的力相平衡,在取值范圍內是根據物體的“需 要”取值,所以與正壓力無關。
②最大靜摩擦力大小決定于正壓力與最大靜摩擦因數(選學)Fm=sFN。效果:總是阻礙物體間的相對運動的趨勢。
五、對物體進行受力分析是解決力學問題的基礎,是研究力學的重要方法,受力分析的程序是:
1. 根據題意選取適當的研究對象,選取研究對象的原則是要使對物體的研究處理盡量簡便,研究對象可以 是單個物體,也可以是幾個物體組成的。
2. 把研究對象從周圍的環境中隔離出來,按照先場力,再接觸力的順序對物體進行受力分析,并畫出物體 的受力示意圖,這種方法常稱為隔離法。
3. 對物體受力分析時,應注意一下幾點:
1)不要把研究對象所受的力與它對其它物體的作用力相混淆。
2)對于作用在物體上的每一個力都必須明確它的來源,不能無中生有。
3)分析的是物體受哪些“性質力”,不要把“效果力”與“性質力”重復分析。 六、力的合成 求幾個共點力的合力,叫做力的合成。
1) 力是矢量,其合成與分解都遵循平行四邊形定則。
2) 一條直線上兩力合成,在規定正方向后,可利用代數運算。
3) 互成角度共點力互成的分析 ①兩個力合力的取值范圍是|F1-F2|≤F≤F1+F2
②共點的三個力,如果任意兩個力的合力最小值小于或等于第三個力,那么這三個共點力的合力可能等于 零。
③同時作用在同一物體上的共點力才能合成(同時性和同體性) 。
④合力可能比分力大,也可能比分力小,也可能等于某一個分力。
七、力的分解 求一個已知力的分力叫做力的分解。
1) 力的分解是力的合成的逆運算,同樣遵循平行四邊形定則。
2) 已知兩分力求合力有唯一解,而求一個力的兩個分力,如不限制條件有無數組解。 要得到唯一確定的解應附加一些條件: ①已知合力和兩分力的方向,可求得兩分力的大小。
②已知合力和一個分力的大小、方向,可求得另一分力的大小和方向。
③已知合力、一個分力 F1 的大小與另一分力 F2 的方向,求 F1 的方向和 F2 的小: 若 F
1=Fsinθ 或 F1≥F 有一組解 若 F>F1>Fsinθ 有兩組解 若 F<Fsinθ 無解 。
3) 在實際問題中,一般根據力的作用效果或處理問題的方便需要進行分解。
4) 力分解的解題思路 力分解問題的關鍵是根據力的作用效果畫出力的平行四邊形,接著就轉化為一個根據已知邊角關系求解的 幾何問題。因此其解題思路可表示為: 必須注意:把一個力分解成兩個力,僅是一種等效替代關系,不能認為在這兩個分力方向上有兩個施力物 體。
八、矢量與標量 既要由大小,又要由方向來確定的物理量叫矢量; 只有大小沒有方向的物理量叫標量 矢量由平行四邊形定則運算;標量用代數方法運算。 一條直線上的矢量在規定了正方向后,可用正負號表示其方向。
九、思維升華??規律?方法?思路
(一) 、物體受力分析的基本思路和方法 物體的受力情況不同,物體可處于不同的運動狀態,要研究物體的運動,必須分析物體的受力情況,正確分析物體的受力情況,是研究力學問題的關鍵,是必須掌握的基本功。 分析物體的受力情況,主要是根據力的概念,從物體的運動狀態及其與周圍物體的接觸情況來考慮。
具體 的方法是:
1. 確定研究對象,找出所有施力物體 確定所研究的物體,找出周圍對它施力的物體,得出研究對象的受力情況。
1)如果所研究的物體為 A,與 A 接觸的物體有 B、C、D……就應出“B 對 A”、“C 對 A”、“D 對 A”、 的作用力等,不能把“A 對 B”、“A 對 C”等的作用力也作為 A 的受力;
2)不能把作用在其它物體上的力,錯誤的認為可通過“力的傳遞”而作用在研究的對象上;
3) 物體受到的每個力的作用,都要找到施力物體;
4) 分析出物體的受力情況后,要檢查能否使研究對象處于題目所給出的運動狀態(靜止或加速等) ,否 則會發生多力或漏力現象。
2. 按步驟分析物體受力 為了防止出現多力或漏力現象,分析物體受力情況通常按如下步驟進行:
1)先分析物體受重力。
2)其研究對象與周圍物體有接觸,則分析彈力或摩擦力,依次對每個接觸面(點)分析,若有擠壓則有 彈力,若還有相對運動或相對運動趨勢,則有摩擦力。
3)其它外力,如是否有牽引力、電場力、磁場力等。
3. 畫出物體力的示意圖
1)在作物體受力示意圖時,物體所受的某個力和這個力的分力,不能重復的列為物體的受力,力的合成 與分解過程是合力與分力的等效替代過程,合力和分力不能同時認為是物體所受的力。
2)作物體是力的示意圖時,要用字母代號標出物體所受的每一個力。
(二) 、力的正交分解法 在處理力的合成和分解的復雜問題上的一種簡便的方法:正交分解法。
正交分解法:是把力沿著兩個選定的互相垂直的方向分解,其目的是便于運用普通代數運算公式來解決矢 量的運算。 力的正交分解法步驟如下:
1)正確選定直角坐標系。通常選共點力的作用點為坐標原點,坐標軸方向的選擇則應根據實際情況來確 定,原則是使坐標軸與盡可能多的力重合,即是使需要向兩坐標軸分解的力盡可能少。
2)分別將各個力投影到坐標軸上。分別求 x 軸和 y 軸上各力的投影合力 Fx 和 Fy,其中: Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+…… 注意:如果 F 合=0,可推出 Fx=0,Fy=
0,這是處理多個作用下物體平衡物體的好辦法,以后會常常用 到。
高中物理皮和力學部分:
1.力、合力、分力、力的平行四邊形法則
2.三種常見類型的力:力的三要素、時間、時刻、位移、路程、速度、速率、瞬時速度、平均速度、平均速率、加速度、共點力平衡(平衡條件)、線速度、角速坦知度、周期、頻率、向心加速度
3.向心力、動量、沖量、動量變化、功、功率、能、動能、重力勢能、彈性勢能、機械能、簡諧運動的位移、回復力、受迫振動、共振、機械波、振幅、波長、波速。
高中物理電學部分:包括靜電學、恒定電流和電磁學。
1.靜電學主要與力學和運動學結合,涉及電場、電場力、庫侖定律、帶電粒子的運動軌跡、電勢、電勢能、電容等。
2.恒定電流讓握消的內容和初中的接近,多了閉合回路中的歐姆定律。
3.電磁學主要有磁場, 洛倫滋力,粒子在磁場、電磁混合場中的運動,法拉第電磁感應定律,交流電,電磁波等。
馬上要參加高考的小伙伴們,物理復習的怎么樣了,物理有哪些知識點呢。以下是由我為大家整理的“高中物理所有知識點總結”,僅供參考,歡迎大家閱讀。
高中物理所有知識點總結
1、大的物體不一定不能看成質點,小的物體不一定能看成質點。
2、平動的物體不一定能看成質點,轉動的物體不一定不能看成質點。
3、參考系不一定是不動的,只是假定為不動的物體。
4、選擇不同的參考系物體運動情況可能不同,但也可能相同。
5、在時間軸上n秒時指的是n秒末。第n秒指的是一段時間,是第n個1秒。第n秒末和第n+1秒初是同一時刻。
6、忽視位移的矢量性,只強調大小而忽視方向。
7、物體做直線運動時,位移的大小不一定等于路程。
8、位移也具有相信空銀對性,必須選一個參考系,選不同的參考系時,物體的位移可能不同。
9、打點計滑宴時器在紙帶上應打出輕重合適的小圓點,如遇到打出的是短橫線,應調整一下振針距復寫紙的高度,使之增大一點。
10、使用計時器打虧雹點時,應先接通電源,待打點計時器穩定后,再釋放紙帶。
11、使用電火花打點計時器時,應注意把兩條白紙帶正確穿好,墨粉紙盤夾在兩紙帶間;使用電磁打點計時器時,應讓紙帶通過限位孔,壓在復寫紙下面。
12、"速度"一詞是比較含糊的統稱,在不同的語境中含義不同,一般指瞬時速率、平均速度、瞬時速度、平均速率四個概念中的一個,要學會根據上、下文辨明"速度"的含義。平常所說的"速度"多指瞬時速度,列式計算時常用的是平均速度和平均速率。
13、著重理解速度的矢量性。有的同學受初中所理解的速度概念的影響,很難接受速度的方向,其實速度的方向就是物體運動的方向,而初中所學的"速度"就是現在所學的平均速率。
14、平均速度不是速度的平均。
15、平均速率不是平均速度的大小。
16、物體的速度大,其加速度不一定大。
17、物體的速度為零時,其加速度不一定為零。
18、物體的速度變化大,其加速度不一定大。
19、加速度的正、負僅表示方向,不表示大小。
20、物體的加速度為負值,物體不一定做減速運動。
21、物體的加速度減小時,速度可能增大;加速度增大時,速度可能減小。
22、物體的速度大小不變時,加速度不一定為零。
23、物體的加速度方向不一定與速度方向相同,也不一定在同一直線上。
24、位移圖象不是物體的運動軌跡。
25、解題前先搞清兩坐標軸各代表什么物理量,不要把位移圖象與速度圖象混淆。
26、圖象是曲線的不表示物體做曲線運動。
27、由圖象讀取某個物理量時,應搞清這個量的大小和方向,特別要注意方向。
28、v-t圖上兩圖線相交的點,不是相遇點,只是在這一時刻相等。
29、人們得出"重的物體下落快"的錯誤結論主要是由于空氣阻力的影響。
30、嚴格地講自由落體運動的物體只受重力作用,在空氣阻力影響較小時,可忽略空氣阻力的影響,近似視為自由落體運動。
31、自由落體實驗實驗記錄自由落體軌跡時,對重物的要求是"質量大、體積小",只強調"質量大"或"體積小"都是不確切的。
32、自由落體運動中,加速度g是已知的,但有時題目中不點明這一點,我們解題時要充分利用這一隱含條件。
33、自由落體運動是無空氣阻力的理想情況,實際物體的運動有時受空氣阻力的影響過大,這時就不能忽略空氣阻力了,如雨滴下落的最后階段,阻力很大,不能視為自由落體運動。
34、自由落體加速度通常可取9.8m/s?或10m/s?,但并不是不變的,它隨緯度和海拔高度的變化而變化。
35、四個重要比例式都是從自由落體運動開始時,即初速度v0=0是成立條件,如果v0≠0則這四個比例式不成立。
36、勻變速運動的各公式都是矢量式,列方程解題時要注意各物理量的方向。
37、常取初速度v0的方向為正方向,但這并不是一定的,也可取與v0相反的方向為正方向。
38、汽車剎車問題應先判斷汽車何時停止運動,不要盲目套用勻減速直線運動公式求解。
39、找準追及問題的臨界條件,如位移關系、速度相等等。
40、用速度圖象解題時要注意圖線相交的點是速度相等的點而不是相遇處。
41、產生彈力的條件之一是兩物體相互接觸,但相互接觸的物體間不一定存在彈力。
42、某個物體受到彈力作用,不是由于這個物體的形變產生的,而是由于施加這個彈力的物體的形變產生的。
43、壓力或支持力的方向總是垂直于接觸面,與物體的重心位置無關。
44、胡克定律公式F=kx中的x是彈簧伸長或縮短的長度,不是彈簧的總長度,更不是彈簧原長。
45、彈簧彈力的大小等于它一端受力的大小,而不是兩端受力之和,更不是兩端受力之差。
46、桿的彈力方向不一定沿桿。
47、摩擦力的作用效果既可充當阻力,也可充當動力。
48、滑動摩擦力只以μ和N有關,與接觸面的大小和物體的運動狀態無關。
49、各種摩擦力的方向與物體的運動方向無關。
50、靜摩擦力具有大小和方向的可變性,在分析有關靜摩擦力的問題時容易出錯。
51、最大靜摩擦力與接觸面和正壓力有關,靜摩擦力與壓力無關。
52、畫力的圖示時要選擇合適的標度。
53、實驗中的兩個細繩套不要太短。
54、檢查彈簧測力計指針是否指零。
55、在同一次實驗中,使橡皮條伸長時結點的位置一定要相同。
56、使用彈簧測力計拉細繩套時,要使彈簧測力計的彈簧與細繩套在同一直線上,彈簧與木板面平行,避免彈簧與彈簧測力計外殼、彈簧測力計限位卡之間有摩擦。
57、在同一次實驗中,畫力的圖示時選定的標度要相同,并且要恰當使用標度,使力的圖示稍大一些。
58、合力不一定大于分力,分力不一定小于合力。
59、三個力的合力最大值是三個力的數值之和,最小值不一定是三個力的數值之差,要先判斷能否為零。
60、兩個力合成一個力的結果是惟一的,一個力分解為兩個力的情況不惟一,可以有多種分解方式。
61、一個力分解成的兩個分力,與原來的這個力一定是同性質的,一定是同一個受力物體,如一個物體放在斜面上靜止,其重力可分解為使物體下滑的力和使物體壓緊斜面的力,不能說成下滑力和物體對斜面的壓力。
62、物體在粗糙斜面上向前運動,并不一定受到向前的力,認為物體向前運動會存在一種向前的"沖力"的說法是錯誤的。
63、所有認為慣性與運動狀態有關的想法都是錯誤的,因為慣性只與物體質量有關。
64、慣性是物體的一種基本屬性,不是一種力,物體所受的外力不能克服慣性。
65、物體受力為零時速度不一定為零,速度為零時受力不一定為零。
66、牛頓第二定律 F=ma中的F通常指物體所受的合外力,對應的加速度a就是合加速度,也就是各個獨自產生的加速度的矢量和,當只研究某個力產生加速度時牛頓第二定律仍成立。
67、力與加速度的對應關系,無先后之分,力改變的同時加速度相應改變。
68、雖然由牛頓第二定律可以得出,當物體不受外力或所受合外力為零時,物體將做勻速直線運動或靜止,但不能說牛頓第一定律是牛頓第二定律的特例,因為牛頓第一定律所揭示的物體具有保持原來運動狀態的性質,即慣性,在牛頓第二定律中沒有體現。
69、牛頓第二定律在力學中的應用廣泛,但也不是"放之四海而皆準",也有局限性,對于微觀的高速運動的物體不適用,只適用于低速運動的宏觀物體。
70、用牛頓第二定律解決動力學的兩類基本問題,關鍵在于正確地求出加速度a,計算合外力時要進行正確的受力分析,不要漏力或添力。
71、用正交分解法列方程時注意合力與分力不能重復計算。
72、注意F合=ma是矢量式,在應用時,要選擇正方向,一般我們選擇合外力的方向即加速度的方向為正方向。
73、超重并不是重力增加了,失重也不是失去了重力,超重、失重只是視重的變化,物體的實重沒有改變。
74、判斷超重、失重時不是看速度方向如何,而是看加速度方向向上還是向下。
75、有時加速度方向不在豎直方向上,但只要在豎直方向上有分量,物體也處于超、失重狀態。
76、兩個相關聯的物體,其中一個處于超(失)重狀態,整體對支持面的壓力也會比重力大(小)。
77、國際單位制是單位制的一種,不要把單位制理解成國際單位制。
78、力的單位牛頓不是基本單位而是導出單位。
79、有些單位是常用單位而不是國際單位制單位,如:小時、斤等。
80、進行物理計算時常需要統一單位。
81、只要存在與速度方向不在同一直線上的合外力,物體就做曲線運動,與所受力是否為恒力無關。
82、做曲線運動的物體速度方向沿該點所在的軌跡的切線,而不是合外力沿軌跡的切線。請注意區別。
83、合運動是指物體相對地面的實際運動,不一定是人感覺到的運動。
84、兩個直線運動的合運動不一定是直線運動,兩個勻速直線運動的合運動一定是勻速直線運動。兩個勻變速直線運動的合運動不一定是勻變速直線運動。
85、運動的合成與分解實際上就是描述運動的物理量的合成與分解,如速度、位移、加速度的合成與分解。
86、運動的分解并不是把運動分開,物體先參與一個運動,然后再參與另一運動,而只是為了研究的方便,從兩個方向上分析物體的運動,分運動間具有等時性,不存在先后關系。
87、豎直上拋運動整體法分析時一定要注意方向問題,初速度方向向上,加速度方向向下,列方程時可以先假設一個正方向,再用正、負號表示各物理量的方向,尤其是位移的正、負,容易弄錯,要特別注意。
88、豎直上拋運動的加速度不變,故其v-t圖象的斜率不變,應為一條直線。
89、要注意題目描述中的隱蔽性,如"物體到達離拋出點5m處",不一定是由拋出點上升5m,有可能在下降階段到達該處,也有可能在拋出點下方5m處。
90、平拋運動公式中的時間t是從拋出點開始計時的,否則公式不成立。
91、求平拋運動物體某段時間內的速度變化時要注意應該用矢量相減的方法。用平拋豎落儀研究平拋運動時結果是自由落體運動的小球與同時平拋的小球同時落地,說明平拋運動的豎直分運動是自由落體運動,但此實驗不能說明平拋運動的水平分運動是勻速直線運動。
92、并不是水平速度越大斜拋物體的射程就越遠,射程的大小由初速度和拋射角度兩因素共同決定。
93、斜拋運動最高點的物體速度不等于零,而等于其水平分速度。
94、斜拋運動軌跡具有對稱性,但彈道曲線不具有對稱性。
95、在半徑不確定的情況下,不能由角速度大小判斷線速度大小,也不能由線速度大小判斷角速度大小。
96、地球上的各點均繞地軸做勻速圓周運動,其周期及角速度均相等,各點做勻速圓周運動的半徑不同,故各點線速度大小不相等。
97、同一輪子上各質點的角速度關系:由于同一輪子上的各質點與轉軸的連線在相同的時間內轉過的角度相同,因此各質點角速度相同。各質點具有相同的ω、T和n。
98、在齒輪傳動或皮帶傳動(皮帶不打滑,摩擦傳動中接觸面不打滑)裝置正常工作的情況下,皮帶上各點及輪邊緣各點的線速度大小相等。
99、勻速圓周運動的向心力就是物體的合外力,但變速圓周運動的向心力不一定是合外力。
100、當向心力有靜摩擦力提供時,靜摩擦力的大小和方向是由運動狀態決定的。
101、繩只能產生拉力,桿對球既可以產生拉力又可以產生壓力,所以求作用力時,應先利用臨界條件判斷桿對球施力的方向,或先假設力朝某一方向,然后根據所求結果進行判斷。
拓展閱讀:如何學好物理
記憶:在高中物理的學習中,應熟記基本概念,規律和一些最基本的結論,即所謂我們常提起的最基礎的知識。同學們往往忽視這些基本概念的記憶,認為學習物理不用死記硬背這些文字性的東西,其結果在高三總復習中提問同學物理概念,能準確地說出來的同學很少,即使是補習班的同學也幾乎如此。我不敢絕對說物理概念背不完整對你某一次考試或某一階段的學習造成多大的影響,但可以肯定地說,這對你對物理問題的理解,對你整個物理知識的形成都有內在的不良影響,說不準哪一次考試的哪一道題就因為你概念不準而失分。因此,學習語文需要熟記名言警句、學習數學必須記憶基本公式,學習物理也必須熟記基本概念和規律,這是學好物理的最先要條件,是學好物理的最基本要求,沒有這一步,下面的學習無從談起。
積累:是學習物理過程中記憶后的工作。在記憶的基礎上,不斷搜集來自課本和參考資料上的許多有關物理知識的相關信息,這些信息有的來自一題,有的來自一道題的一個插圖,也可能來自一小段閱讀材料等等。在搜集整理過程中,要善于將不同知識點分析歸類,在整理過程中,找出相同點,也找出不同點,以便于記憶。積累過程是記憶和遺忘相互斗爭的過程,但是要通過反復記憶使知識更全面、更,使公式、定理、定律的聯系更加緊密,這樣才能達到積累的目的,絕不能象狗熊掰棒子式的重復勞動,不加思考地機械記憶,其結果只能使記憶的比遺忘的還多。
綜合:物理知識是分章分節的,物理考綱中要求的內容也是一塊一塊的,它們既相互聯系,又相互區別,所以在物理學習過程中要不斷進行小綜合,等高三年級知識學完后再進行大綜合。這個過程對同學們能力要求較高,章節內容互相聯系,不同章節之間可以互相類比,真正將前后知識融會貫通,連為一體,這樣就逐漸從綜合中找到知識的聯系,同時也找到了學習物理知識的興趣。