當前位置: 首頁 > 學科分類 > 數學

高二上學期數學公式,高二數學重點公式歸納

  • 數學
  • 2023-07-12

高二上學期數學公式?高二數學知識點及公式如下:1、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。2、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。3、那么,高二上學期數學公式?一起來了解一下吧。

高二上學期數學期末總結

高二數學知識點及公式如下:

1、線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。

2、萬能公式:令tan(a/2)=t、sina=2t/(1+t^2)、cosa=(1-t^2)/(1+t^2)、tana=2t/(1-t^2)。積化和差:sina*cosb=[sin(a+b)+sin(a-b)]/2、cosa*sinb=[sin(a+b)-sin(a-b)]/2、cosa*cosb=[cos(a+b)+cos(a-b)]/2、sina*sinb=-[cos(a+b)-cos(a-b)]/2。

3、如果跡逗陵兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

4、函數的單調性、奇偶性、周期性。例如單調性定義:注意定義是相對于某個具體的區間而言。 判定方法有定義法(作差比較和作商比較)。 導數法(適用于多姿戚項式函數) 。

5、如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平指數面。

高中數學必背公式大全

平方關系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·積的關系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒數關系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的關系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的對邊比斜邊,

余弦等于角A的鄰邊比斜邊乎敏

正切世森等于對邊比鄰邊,

·[1]三角函數恒等變形公式

·兩角和與差的三角函數:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函數:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·輔助角公式:

Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

sint=B/(A2+B2)^(1/2)

cost=A/(A2+B2)^(1/2)

tant=B/A

Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan(2α)=2tanα/[1-tan2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/歲返枝2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降冪公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

·萬能公式:

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=2tan(α/2)/[1-tan2(α/2)]

·積化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化積公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos2α

1-cos2α=2sin2α

1+sinα=(sinα/2+cosα/2)2

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

證明:

左邊=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (積化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右邊

等式得證

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

證明:

左邊=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右邊

等式得證

[編輯本段]三角函數的誘導公式

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與 -α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC

證明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

類似地,我們同樣也可以求證:當α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ

設a=(x,y),b=(x',y')。

高二下冊數學公式總結大全

高二上冊數學知識點及公式如下:

公式一:設α為任意角,終邊相虧羨跡同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

公式二:設α為任意派鬧角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

公式三:任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

公式四:利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

知識點:

1、算法概念:在數學上,現代意義上的“算法”通常是指可以用計算機來解決的某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內完成。

2、算法的特點:

(1)有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的。

(2)確定性:算法中的每一步應該是確定的并且能有效地執行且得到確定的結果,而不應當是模棱兩可。

(3)順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執行完前一步才能進行下一步,并且每一步都準確無誤,才能完成問題。

高一高二數學公式整理

高二數學知識點仔態及公式如下:

1、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

2、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。

3、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。陪戚謹

4、集合中元素的特征: 確定性蘆基、互異性、無序性 。

5、空集是指不含任何元素的集合,空集是任何集合的子集,是任何非空集合的真子集。

6、cosa*cosb=[cos(a+b)+cos(a-b)]/2。

7、sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)。

數學公式高二

高中數學課程應該返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質。那么高二數學都運碼肆有哪些公式呢?接下來我為你整理了高二數學公式,一起來看看吧。

高二數學公式:推導

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin&;sup2;a)+(1-2sin&;sup2;a)sina

=3sina-4sin&;sup3;a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos&;sup2;a-1)cosa-2(1-sin&;sup2;a)cosa

=4cos&;sup3;a-3cosa

sin3a=3sina-4sin&;sup3;a

=4sina(3/4-sin&;sup2;a)

=4sina[(√3/2)&;sup2;-sin&;sup2;a]

=4sina(sin&;sup2;60°-sin&;sup2;a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos&;sup3;a-3cosa

=4cosa(cos&;sup2;a-3/4)

=4cosa[cos&模檔;sup2;a-(√3/2)&;sup2;]

=4cosa(cos&;sup2;a-cos&;sup2;30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

高二數學公式:半角公式與三角和

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα?cosβ?cosγ+cosα?sinβ?cosγ+cosα?cosβ?sinγ-sinα?sinβ?sinγ

cos(α+β+γ)=cosα?cosβ?cosγ-cosα?sinβ?sinγ-sinα?cosβ?sinγ-sinα?sinβ?cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα?tanβ?tanγ)/(1-tanα?tanβ-tanβ?tanγ-tanγ?tanα)

高二數學公式:兩角和差與和差化積

兩角和差

cos(α+β)=cosα?cosβ-sinα旁轎?sinβ

cos(α-β)=cosα?cosβ+sinα?sinβ

sin(α±β)=sinα?cosβ±cosα?sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα?tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα?tanβ)

和差化積

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

以上就是高二上學期數學公式的全部內容,高二數學知識點及公式如下:1、線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。2、萬能公式:令tan(a/2)=t、sina=2t/(1+t^2)、cosa=(1-t^2)/(1+t^2)、。

猜你喜歡

主站蜘蛛池模板: 无码无遮挡又大又爽又黄的视频| 97性无码区免费| 四虎成人精品无码永久在线 | 综合无码一区二区三区四区五区 | 亚洲日韩一区二区一无码| 亚洲AV无码AV日韩AV网站| 亚洲午夜国产精品无码| 人妻系列无码专区无码中出| 亚洲AV无码乱码在线观看性色扶| 亚洲中文字幕无码爆乳AV| 成人无码区免费视频观看 | 无码专区天天躁天天躁在线| 日韩免费a级毛片无码a∨| 日韩乱码人妻无码中文字幕| 国产无码一区二区在线| 精品久久久无码中文字幕边打电话 | 无码人妻精品一区二区三18禁| 亚洲a无码综合a国产av中文| 亚洲AV日韩AV永久无码免下载| 精品人妻无码专区中文字幕| 无码免费午夜福利片在线| 人妻中文字系列无码专区| 久久亚洲AV无码精品色午夜麻| 成人免费无码H在线观看不卡| 日韩人妻无码免费视频一区二区三区 | 在线观看成人无码中文av天堂| 国精品无码一区二区三区左线 | 中文字幕无码第1页| yy111111少妇无码影院| 一道久在线无码加勒比| 精品无码久久久久久久久水蜜桃| 亚洲爆乳无码专区www| 97性无码区免费| 欧洲精品无码成人久久久| 中文无码亚洲精品字幕| 亚洲av纯肉无码精品动漫| 亚洲av无码成人影院一区| 人妻少妇看A偷人无码精品视频| 亚洲午夜无码久久久久小说 | 中文字幕无码第1页| 亚洲AV无码不卡无码|