高中數學教材分析?四、教學過程分析 (一)創設情境,引入新課 給學生講一個故事--《1名數學家=10個師》:這是一個真實的事例,數學家運用自己的知識和方法解決了英美海軍無力解決的問題,這便是數學知識的魅力所在。它告訴我們數學知識在實際生活中的作用是巨大的,特別是當今社會,隨著信息時代的到來,那么,高中數學教材分析?一起來了解一下吧。
講授新課前,做一份完美的教案,能夠更大程度的調動學生在上課時的積極性。接下來是我為大家整理的高中數學教案設計,希望大家喜歡!
高中數學教案設計一
教學目標
1。使學生掌握的概念,圖象和性質。
(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域。
(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質。
(3) 能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如 的圖象。
2。 通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法。
3。通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣。使學生善于從現實生活中數學的發現問題,解決問題。
教學建議
教材分析
(1)是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究。
(2) 本節的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數 在 和 時,函數值變化情況的區分。
高中數學說課稿高中數學《函數的單調性》
一、教材分析
1、教材內容
本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2.1.3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用定義解決一些簡單問題.
2、教材所處地位、作用
函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質.通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題.通過上述活動,加深對函數本質的認識.函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎.此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法.
3、教學目標
(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性
的方法;
(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的`定義解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力.
(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質.
4、重點與難點
教學重點(1)函數單調性的概念;
(2)運用函數單調性的定義判斷一些函數的單調性.
教學難點(1)函數單調性的知識形成;
(2)利用函數圖象、單調性的定義判斷和證明函數的單調性.
二、教法分析與學法指導
本節課是一節較為抽象的數學概念課,因此,教法上要注意:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性.
2、在運用定義解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用.具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達.
4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性.
在學法上:
1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力.
2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍.
;高一數學《等差數列》第一課時說課稿
下面是我整理的高一數學《等差數列》第一課時說課稿,希望對大家有所幫助。
本節課講述的是人教版高一數學(上)§3.2等差數列(第一課時)的內容。
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。
b在能力上:培養學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數列的研究,培養學生主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。
圓的方程
教學目標
(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.
(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.
(4)掌握直線和圓的位置關系,會求圓的切線.
(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學建議
教材分析
(1)知識結構
(2)重點、難點分析
①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.
②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.
教法建議
(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.
(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.
(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.
(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
教學設計示例
圓的一般方程
教學目標:
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.
(3)能用待定系數法,由已知條件求出圓的一般方程.
(4)通過本節課學習,進一步掌握配方法和待定系數法.
教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.
(2)用待定系數法求圓的方程.
教學難點:圓的一般方程特點的研究.
教學用具:計算機.
教學方法:啟發引導法,討論法.
教學過程:
【引入】
前邊已經學過了圓的標準方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得
②
顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:
(1)當 時,②表示以 為圓心、以 為半徑的圓;
(2)當 時,②表示一個點 ;
(3)當 時,②不表示任何曲線.
總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當 時,①表示以 為圓心、以 為半徑的圓,
此時①稱作圓的一般方程.
即稱形如 的方程為圓的一般方程.
【問題2】圓的一般方程的特點,與圓的標準方程的異同.
(1) 和 的系數相同,都不為0.
(2)沒有形如 的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標準方程各有千秋:
(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.
【實例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
(3) .
學生演算并回答
(1)表示點(0,0);
(2)配方得 ,表示以 為圓心,3為半徑的圓;
(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.
例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.
分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.
解:設圓的方程為
因為 、 、 三點在圓上,則有
解得: , ,
所求圓的方程為
可化為
圓心為 ,半徑為5.
請同學們再用標準方程求解,比較兩種解法的區別.
【概括總結】通過學生討論,師生共同總結:
(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.
(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.
下面再看一個問題:
例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.
解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.
∵
∴
即
化簡得
點 在曲線上,并且曲線為圓 內部的一段圓弧.
【練習鞏固】
(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)
(2)求經過三點 、 、 的圓的方程.
分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .
(3)課本第79頁練習1,2.
【小結】師生共同總結:
(1)圓的一般方程及其特點.
(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.
(3)用待定系數法求圓的方程.
【作業】課本第82頁5,6,7,8.
人教版高中數學必修3《隨機事件的概率》說課稿
大家好,我叫!我說課的題目是《隨機事件的概率》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
“隨機事件的概率”是第三章《概率》的第一節課,是學生學習《概率》的入門課,也是一堂概念課。現實生活中存在大量不確定事件,而概率正是研究不確定事件的一門學科。概率也是每年高考的必查內容之一,主要是對基礎知識的運用以及生活中的隨機事件的概率的計算,這些都是學生今后的學習、工作與生活中必備的數學素養,所以它在教材中處于非常重要的位置。
2.教學的重點和難點
重點:①事件的分類;
②了解隨機事件發生的不確定性和概率的穩定性;
③正確理解概率的定義。
難點:隨機事件的概率的統計定義.
二、教學目標分析
1.知識與技能目標:
(1)了解隨機事件、必然事件、不可能事件的概念;
(2)正確理解事件A出現的頻率的意義;
(3)正確理解概率的概念和意義,明確事件A發生的頻率fn(A)與事件A發生的概率P(A)的區別與聯系;
(4)利用概率知識正確理解現實生活中的實際問題.
2、過程與方法:
(1)發現法教學,經歷拋硬幣試驗獲取數據的過程,歸納總結試驗結果,發現規律,真正做到在探索中學習,在探索中提高;
(2)通過三種事件的區分及用統計算法計算隨機事件的概率,提高學生分析問題、解決問題的能力;
(3)通過概念的提煉和小結的歸納提高學生的語言表達和歸納能力。
以上就是高中數學教材分析的全部內容,【教材地位及作用】 基本不等式又稱為均值不等式,選自北京師范大學出版社普通高中課程標準實驗教科書數學必修5第3章第3節內容。教學對象為高二學生,本節課為第一課時,重在研究基本不等式的證明及幾何意義。內容來源于互聯網,信息真偽需自行辨別。如有侵權請聯系刪除。