六年級數學上冊總結?2、能利用七巧板在方格紙上變換各種圖形。能運用圖形的變換在方格紙上設計美麗的圖案,進一步體會平移、旋轉和軸對稱在設計圖案中的作用。 3、欣賞圖案,感受圖形世界的神奇。通過生活中有趣而美麗的圖案,認識數學的美,體會圖形世界神奇。那么,六年級數學上冊總結?一起來了解一下吧。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現實世界的任何問題,所有的數學對象本質上都是人為定義的。下指皮陵面為大家帶來了人教版六年級數學上冊知識點整理歸納:第三單元,歡迎大家參考!
一、分數除法的意義和分數除以整數
知識點一:分數除法的意義
整數除法的意義:已知兩個因數的積與其中一個因數,求另一個因數的運算。
知識點二:分數除以整數的計算方法
把一個數平均分成整數份,求其中的幾份就是求這個數的幾分之幾是多唯戚少。
分數除以整數(0除外)的計算方法:
(1)用分子和整數相除的商做分子,分母不變。
(2)分數除以整數,等于分數乘這個整數的倒數。
二、一個數除以分數
知識點一:一個數除以分數的計算方法
一個數除以分數,等于這個數乘分數的倒數。
知識點二:分數除法的握春統一計算法則
甲數除以乙數(0除外),等于甲數乘乙數的倒數。
知識點三:商與被除數的大小關系
一個數(0除外)除以小于1的數,商大于被除數,除以1,商等于被除數,除以大于1的數,商小于被除數。0除以任何數商都為0。
三、分數除法的混合運算
知識點一:分數除加、除減的運算順序
除加、除減混合運算,如果沒有括號,先算除法,后算加減。
六年級數學上冊教學工作總結
本學期又將過去,可以說在緊張忙碌的工作中度過了這一學期的時光。本文的內容是六年級數學上冊教學工作總結,歡迎大家參閱!
六年級數學上冊教學工作總結1
本學期又將過去,可以說在緊張忙碌的工作中度過了這一學期的時光。總體看,我能認真執行學校教育教學工作計劃,把新課程標準的新思想、新理念和數學課堂教學的新思路、新設想結合起來,轉變思想,積極探索,改革教學,收到很好的效果。為了克服不足,總結經驗,使今后的工作更上一層樓,現對本學期教學工作作出如下總結:
一、認真備課。
備課時,不但備學生,而且備教材、備教法。根據教學內容及學生的實際,設計課的類型,擬定采用的教學方法,并對教學過程的程序及時間安排都做了詳細的記錄,既突出了本節課的難點,又突破了本節課的重點。每一課都做到“有備而來”,每堂課都在課前做好充分的準備,課后趁記憶猶新,回顧、反思寫下自己執教時的切身體會或疏漏,記下學生學習中的閃光點或困惑,是教師最寶貴的第一手資料,教學經驗的積累和教訓的吸取,對今后改進課堂教學和提高教師的教學水評是十分有用。
二、注重課堂教學的師生之間學生之間交往互動,共同發展,增強上課技能,提高教學質量。
知識整理是數學學習的關鍵,那么六年級上冊數學知識點整理有哪些呢?下面是由我為大家整理的“六年級上冊數學知識點歸納整理”,僅供參考,歡迎大家閱讀。
六年級上冊數學知識點歸納整理
第一單空鋒元 圓
1、使學生認識圓的特征:圓的半徑、直徑、圓心。認識在同圓內半徑和直徑的關系。知道圓是軸對稱圖斗洞晌形,有無數條對稱軸,而這些對稱軸都過圓心。知道生活中有了圓才使我們的生活更美好。
2、認識同心圓、等圓。知道圓的位置由圓心決定,圓的大小由半徑或直徑決定。等圓的半徑相等,位置不同;而同心圓的半徑不同,位置相同。
3、使學生知道圓的周長和圓周率的含義,掌握圓的周長的計算公式,能夠正確地計算圓的周長.介紹祖沖之在圓周率研究上的成就,滲透愛國主義教育。在運用上,要能根據圓的周長算直徑或半徑,會算半圓的周長:圓的周長×1/2+直徑。會求組合圖形的周長。
4、了解圓的面積的含義,經歷圓面積計算公式的推導過程,掌握圓面積計算公式。
5、能正確運用圓的面積公式計算圓的面積,并能運用圓面積知識解決一些簡單實際的問題。會靈活運用圓的面積公式。已知圓的周長會算圓的面積,會求組合圖形的面積。會算圓環的面積,并且知道在周長相等的情況下,正方形、長方形、圓三種圖形中,圓的面積最大。
真正的知識分子該有一副傲骨,不善趨炎附勢。這使他們當中絕大多數顯得個色,總是鶴立雞群,混不進人堆里。下面我給大家分享一些六年級上冊數學課本知識點歸納,希望能夠幫助大家,歡迎閱讀!
六年級上冊數學課本知識點1
第一單元 分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
“分數乘整數”指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
“一個數乘分數”指的是第二個因數必須是分數,不能是整數。(第一個因數是什么都可以)
(二)分數乘法計算法則:
1、分數乘整數的運算法則是:分子與整數相乘,分母不變。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的運算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
第一部分 數與代數
一、分數乘法
(一)分數乘法的計算法則:
1、分數與整數相乘:分子與整數相乘的積做分子,分母不變。(整數和分母約分)
2、分數與分數相乘:用分子相乘的積做分子,分母相乘的積做分母。
3、為了計算簡便,能約分的要先約分,再計算。
注意:當帶分數進行乘法計算時,要先把帶分數化成假分數再進行計算。
(二)規律:(乘法中比較大小時)
一個數(0除外)乘大于1的數,積大于這個數。
一個數(0除外)乘小于1的數(0除外),積小于這個數。
一個數(0除外)乘1,積等于這個數。
(三)分數混合運算的運算順序和整數的運算順序相同。
(四)整數乘法的交換律、結合律和分配律,對于分數乘法也同樣適用。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c
二、分數乘法的解決問題(詳細見重難點分解)
(已知單位“1”的量(用乘法),求單位“1”的幾分之幾是多少)
1、找單位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面
2、求一個數的幾倍: 一個數×幾倍; 求一個數的幾分之幾是多少: 一個數× 。
3、寫數量關系式技巧:
(1)“的”相當于 “×”(乘號)
“占”、“是”、“比”“相當于”相當于“=”(等號)
(2)分率前是“的”:
單位“1”的量×分率=分率對應量
(3)分率前是“多或少”的意思:
單位“1”的量×(1±分率)=分率的對應量
二、分數除法
(一)倒數
1、倒數的意義: 乘積是1的兩個數互為倒數。
以上就是六年級數學上冊總結的全部內容,六年級上冊數學知識 總結 1 圓 一、圓的特征 1、圓是平面內封閉曲線圍成的平面圖形。 2、圓的特征:外形美觀,易滾動。 3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。 圓多次對折之后,折痕的相交于圓的中心即圓心。