數(shù)學(xué)高一必修四?1.高一年級數(shù)學(xué)必修四知識點(diǎn)整理 指數(shù)函數(shù) (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。那么,數(shù)學(xué)高一必修四?一起來了解一下吧。
【 #高一#導(dǎo)語】人生要敢于理解挑戰(zhàn),經(jīng)受得起挑戰(zhàn)的人才能夠領(lǐng)悟人生非凡的真諦,才能夠?qū)崿F(xiàn)自我無限的超越,才能夠創(chuàng)造魅力永恒的價(jià)值。以下是高一頻道為你整理的《高一數(shù)學(xué)必修四知識點(diǎn):三角函沒舉前數(shù)誘導(dǎo)公式》,希望你不負(fù)時(shí)光,努力向前,加油!
【公式一】
設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
【公式六】
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
【高一數(shù)學(xué)函數(shù)復(fù)習(xí)資料】
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
枯清則此時(shí)稱y是x的一次函數(shù)。
高中階段學(xué)科知識交叉多、綜合性強(qiáng)悔談,以理解和應(yīng)用為主,要求學(xué)生要有更強(qiáng)的分析、概括、綜合、實(shí)踐的能力。在高中階段,不能純仔只局限于知識的學(xué)習(xí),而要重視觀察、思維、分析、閱讀、動手等能力的培養(yǎng)。下面是我給大家?guī)淼母咭粩?shù)學(xué)知識點(diǎn),希望大家能夠喜歡!
高一數(shù)學(xué)知識點(diǎn)匯總空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
練習(xí)題:
1.正四棱錐P—ABCD的側(cè)棱長和底面邊長都等于,有兩個(gè)正四面體的棱長也都等于.當(dāng)這兩個(gè)正四面體各有一個(gè)面與正四棱錐的側(cè)面PAD,側(cè)面PBC完全重合時(shí),得到一個(gè)新的多面體,該多面體是()
(A)五面體
(B)七面體
(C)九面體
(D)十一面體
2.正四面體的四個(gè)頂點(diǎn)都在一個(gè)球面上,且正四面體的高為4,做前汪則球的表面積為()
(A)9
(B)18
(C)36
(D)64
3.下列說法正確的是()
A.棱柱的側(cè)面可以是三角形
B.正方體和長方體都是特殊的四棱柱
C.所有的幾何體的表面都能展成平面圖形
D.棱柱的各條棱都相等
高一數(shù)學(xué)知識點(diǎn)總結(jié)一)兩角和差公式 (寫的都要記)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA ?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面這個(gè)余弦的很重要)
sin2A=2sinA_cosA
三)半角的只需記住這個(gè):
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
四)用二倍角中的余弦可推出降冪公式
(sinA)^2=(1-cos2A)/2
(cosA)^2=(1+cos2A)/2
五)用以上降冪公式可推出以下常用的化簡公式
1-cosA=sin^(A/2)_2
1-sinA=cos^(A/2)_2
高一數(shù)學(xué)知識點(diǎn)梳理重點(diǎn)難點(diǎn)講解:
1.回歸分析:
就是對具有相關(guān)關(guān)系的兩個(gè)變量之間的關(guān)系形式進(jìn)行測定,確定一個(gè)相關(guān)的數(shù)學(xué)表達(dá)式,以便進(jìn)行估計(jì)預(yù)測的統(tǒng)計(jì)分析方法。
高中同學(xué)祥埋圓們學(xué)習(xí)任務(wù)日益繁重,自然不能平均分配學(xué)習(xí)任務(wù)。以下是由我為大家整理的“高中數(shù)學(xué)必修四知識點(diǎn)總結(jié)”,僅供參考,歡迎大家閱讀。
高中數(shù)學(xué)必修四知識點(diǎn)總結(jié)
1.課程內(nèi)容:
必修課程由5個(gè)模塊組成:
必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統(tǒng)計(jì)、概率。
必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。
必修5:解三角形、數(shù)列、不等式。
以上是每一個(gè)高中學(xué)生所必須學(xué)習(xí)的。
上述內(nèi)容覆蓋了高中階段傳統(tǒng)的數(shù)學(xué)基礎(chǔ)知識和基本技能的主要部分,其中包括集合、函數(shù)、數(shù)列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎(chǔ)的同時(shí),進(jìn)一步強(qiáng)調(diào)了這些知識的發(fā)生、發(fā)展過程和實(shí)際應(yīng)用,而不在技巧與難度上做過高的要求。
此外,基礎(chǔ)內(nèi)容還增加了向量、算法、概率、統(tǒng)計(jì)等內(nèi)容。
2.重難點(diǎn)及考點(diǎn):
重點(diǎn):函數(shù),數(shù)列,三角函數(shù),平面向量,圓錐曲線,立體幾何,導(dǎo)數(shù)。
難點(diǎn):函數(shù)、圓錐曲線。
高考相關(guān)考點(diǎn):
⑴集合與簡易邏輯:集合的概念與運(yùn)算、簡易邏輯、充要條件。
高一數(shù)學(xué)必修4知識點(diǎn)總結(jié) 1
第一章 三角函數(shù)
正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角
1、任意角負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角
零角:不作任何旋轉(zhuǎn)形成的角
2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.
第二象限角的集合為k36090k360180,k
第三象限角的集合為k360180k360270,k第四象限角的集合為k360270k360360,k終邊在x軸上的角的集合為k180,k
終邊在y軸上的角的集合為k18090,k終邊在坐標(biāo)軸上的角的集合為k90,k
第一象限角的集合為k360k36090,k
3、與角終邊相同的角的集合為k360,k
4、長度等于半徑長的弧所對的圓心角叫做1弧度.
5、半徑為r的圓的圓心角所對弧的長為l,則角的弧度數(shù)的絕對值是
l. r
180
6、弧度制與角度制的換算公式:2360,1,157.3. 180
7、若扇形的圓心角為
為弧度制,半徑為r,弧長為l,周長為C,面積為S,則lr,C2rl,
1
11
Slrr2.
22
8
、設(shè)是一個(gè)任意大汪悉衡小的角,它與原點(diǎn)的距離是rr的終邊上任意一點(diǎn)的坐標(biāo)是x,y,則sin
0,
yxy
,cos,tanx0. rrx
9、三角函數(shù)在各象限的符號:第一象限全為正,第二象限正弦為正,
第三象限正切為正,第四象限余弦為正.
10、三角函數(shù)線:sin,cos,tan.
2222
11、角三角函數(shù)的基本關(guān)系:1sin2cos21sin1cos,cos1sin
;
2
sin
tancos
sin
sintancos,cos.
tan
12、函數(shù)的誘導(dǎo)公式:
1sin2ksin,cos2kcos,tan2ktank. 2sinsin,coscos,tantan. 3sinsin,coscos,tantan. 4sinsin,coscos,tantan.
口訣:函陸塵數(shù)名稱不變,符號看象限.
5sin
cos,cossin.6sincos,cossin. 2222
口訣:正弦與余弦互換,符號看象限.
13、①的圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
1
倍(縱坐標(biāo)不變),得到函數(shù)ysinx的圖象;再將
函數(shù)ysinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)
ysinx的圖象.
②數(shù)ysinx的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的
1
倍(縱坐標(biāo)不變困做),得到函數(shù)
ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)向左(右)平移
個(gè)單位長度,得到函數(shù)
ysinx的圖象;再將函數(shù)ysinx的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫
2
坐標(biāo)不變),得到函數(shù)ysinx的圖象. 14、函數(shù)ysinx0,0的性質(zhì): ①振幅:;②周期:
2
;③頻率:f
1
;④相位:x;⑤初相:. 2
函數(shù)ysinx,當(dāng)xx1時(shí),取得最小值為ymin ;當(dāng)xx2時(shí),取得最大值為ymax,則
11
x2x1x1x2ymaxyminymaxymin
22,,2.
yASinx , A0 , 0 , T
2
15 周期問題
2
yACosx , A0 , 0 , T
yASinx, A0 , 0 , T
yACosx, A0 , 0 , T
yASinxb , A0 , 0 , b 0, T
2
2
yACosxb , A0 , 0 , b0 ,T
TyAcotx , A0 , 0 ,
yAtanx , A0 , 0 , T
yAcotx, A0 , 0 , T
yAtanx , A0 , 0 , T
3
第二章 平面向量
16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量. 有向線段的三要素:起點(diǎn)、方向、長度. 零向量:長度為0的向量. 單位向量:長度等于1個(gè)單位的向量. 平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.
相等向量:長度相等且方向相同的向量.
17、向量加法運(yùn)算:
⑴三角形法則的特點(diǎn):首尾相連. ⑵平行四邊形法則的特點(diǎn):共起點(diǎn).
C
⑶三角形不等式:ababab.
⑷運(yùn)算性質(zhì):①交換律:abba;
abcabc②結(jié)合律:;③a00aa.
a
b
abCC
4
⑸坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.
18、向量減法運(yùn)算:
⑴三角形法則的特點(diǎn):共起點(diǎn),連終點(diǎn),方向指向被減向量.
⑵坐標(biāo)運(yùn)算:設(shè)ax1,y1,bx2,y2,則abx1x2,y1y2.
設(shè)、兩點(diǎn)的坐標(biāo)分別為x1,y1,x2,y2,則x1x2,y1y2.
19、向量數(shù)乘運(yùn)算:
⑴實(shí)數(shù)與向量a的積是一個(gè)向量的運(yùn)算叫做向量的數(shù)乘,記作a. ①
aa;
②當(dāng)0時(shí),a的方向與a的方向相同;當(dāng)0時(shí),a的方向與a的方向相反;當(dāng)0時(shí),a0.
⑵運(yùn)算律:①aa;②aaa;③abab.
⑶坐標(biāo)運(yùn)算:設(shè)ax,y,則ax,yx,y.
20、向量共線定理:向量aa0與b共線,當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使ba.
設(shè)ax1,y1,bx2,y2,其中b0,則當(dāng)且僅當(dāng)x1y2x2y10時(shí),向量a、bb0共線.
21、平面向量基本定理:如果e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量a,有
且只有一對實(shí)數(shù)1、2,使a1e12e2.(不共線的向量e1、e2作為這一平面內(nèi)所有向量的一組基底) 22、分點(diǎn)坐標(biāo)公式:設(shè)點(diǎn)是線段12上的一點(diǎn),1、2的坐標(biāo)分別是x1,y1,x2,y2,當(dāng)12時(shí),
點(diǎn)的坐標(biāo)是
x1x2y1y2
時(shí),就為中點(diǎn)公式。
重點(diǎn)難點(diǎn)講解:
1.回歸分析:
就是對具有相關(guān)關(guān)系的兩個(gè)變量之間的關(guān)系形式進(jìn)行測定,確定一個(gè)相關(guān)的數(shù)學(xué)表達(dá)式,以便進(jìn)行估計(jì)預(yù)測的統(tǒng)計(jì)分析方法。根據(jù)回歸分析方法得出的數(shù)學(xué)表達(dá)式稱為回歸方程,它可能是直線,也可能是曲線。
2.線性回歸方程
設(shè)x與y是具有相關(guān)關(guān)肢老系的兩個(gè)變量,且相應(yīng)于n組觀測值的n個(gè)點(diǎn)(xi,yi)(i=1,......,n)大致分布在一條直線的附近,則回歸直線的方程譽(yù)頃為。
其中。
3.線性相關(guān)性檢驗(yàn)
線性相關(guān)性檢驗(yàn)是一種假設(shè)檢驗(yàn),它給出了一個(gè)具體檢驗(yàn)y與x之間線性相關(guān)與否的辦法。
①在課本附表3中查出與顯著性水平0.05與自由度n-2(n為觀測值組數(shù))相應(yīng)的相關(guān)系數(shù)臨界值r0.05。
②由公式,計(jì)算r的值。
③檢驗(yàn)所得結(jié)果
如果|r|≤r0.05,可以認(rèn)為y與x之間的線性相關(guān)關(guān)系不顯著,接受統(tǒng)計(jì)假設(shè)。
如果|r|>r0.05,可以認(rèn)為y與x之間不具有線性相關(guān)關(guān)系的假設(shè)是不成立的,即y與x之間具有線性相關(guān)關(guān)系。
典型例題講解:
例1.從某班50名學(xué)生中隨機(jī)抽取10名,測得其數(shù)學(xué)考試成績與物理考試成績資料如表:序號12345678910數(shù)學(xué)成績54666876788285879094,物理成績61806286847685828896試建立該10名學(xué)生的物理成績對數(shù)學(xué)成績的線性回歸模型。
以上就是數(shù)學(xué)高一必修四的全部內(nèi)容,【 #高一# 導(dǎo)語】高一階段,是打基礎(chǔ)階段,是將來決戰(zhàn)高考取勝的關(guān)鍵階段,今早進(jìn)入角色,安排好自己學(xué)習(xí)和生活,會起到事半功倍的效果。以下是 為你加油! 1.高一年級數(shù)學(xué)必修四知識點(diǎn) ⑴公比為q的等比數(shù)列。