高二數學數列?2、高二數學數列的分類 (1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列。在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,那么,高二數學數列?一起來了解一下吧。
【 #高二#導語】高二年級有兩大特點:一、教學進度快。一年要完成二年的課程。二、高一的新鮮過了,距離高考尚遠,最容易玩的瘋、走的遠的時候。導致:心理上的迷茫期,學業上進的緩慢期,自我約束的松散期,易誤入歧路,大浪淘沙的篩選期。因此,直面高二的挑戰,認清高二,認清高二的自己,認清高二的任務,顯得意義十分重大而迫切。 無 高二頻道為你整理了《高二年級數學必修五等差數列知識點歸納》,希望對你的學習有所幫助!
【一】
1.等差數列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷2
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數列的前n項和等于首末兩項的和與項數乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數列性質
一、任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
高中數學課本中講到,按一定次序排列的一列數稱為數列。下面是我給大家帶來的高二數學數列知識點總結,希望對你有幫助。
1、高二數學數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項。
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列。
(2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,…。
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n。
(5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別。如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合。
一、等差數列的有關概念:
1.定義:如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列.符號表示為an+1-an=d(n∈N*,d為常數).
2.等差中項:數列a,A,b成等差數列的充要條件是A=(a+b)/2,其中A叫做a,b的等差中項.
二、等差數列的有關公式
1.通項公式:an=a1+(n-1)d.
2.前n項和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.
三、等差數列的性質
1.若m,n,p,q∈N*,且m+n=p+q,{an}為等差數列,則am+an=ap+aq.
2.在等差數列{an}中,ak,a2k,a3k,a4k,…仍為等差數列,公差為kd.
3.若{an}為等差數列,則Sn,S2n-Sn,S3n-S2n,…仍為等差數列,公差為n2d.
4.等差數列的增減性:d>0時為遞增數列,且當a1<0時前n項和Sn有最小值.d<0 a1="">0時前n項和Sn有最大值.
5.等差數列{an}的首項是a1,公差為d.若其前n項之和可以寫成Sn=An2+Bn,則A=d/2,B=a1-d/2,當d≠0時它表示二次函數,數列{an}的前n項和Sn=An2+Bn是{an}成等差數列的充要條件.
四、解題方法
1.與前n項和有關的三類問題
(1)知三求二:已知a1、d、n、an、Sn中的任意三個,即可求得其余兩個,這體現了方程思想.
(2)Sn=d/2*n2+(a1-d/2)n=An2+Bn?d=2A.
(3)利用二次函數的圖象確定Sn的最值時,最高點的`縱坐標不一定是最大值,最低點的縱坐標不一定是最小值.
2.設元與解題的技巧
已知三個或四個數組成等差數列的一類問題,要善于設元,若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,…;
若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據等差數列的定義進行對稱設元
等差數列的通項公式:an=a1+(n-1)d
等差中項:A=(a+b)/2
等差數列的前n項和:Sn=n(a1+a2)/2
或
Sn=na1+nd(n-1)/2
等比數列的通項公式:
an=a1乘q(n-1)次方
等比中項:
G平方=ab
等比數列的前n項和:
當q不=1時
:Sn=
a1(1-q的n次方)/1-q
或
Sn=a1-an乘q/1-q
當q=1時
Sn=na1
設a1為a/q,a2為a,a3為aq,
a1+a2+a3=7=a/q+a+aq
a1a2a3=8=a/q
*
a
*
aq=a^3
所以a=2,q=2
所以a1=1,a2=2,a3=4
等比通項an=a1*q^(n-1)=2^(n-1)
以上就是高二數學數列的全部內容,一般地,如果一個數列[1]從第2項起,每一項與它的前一項的比等于同一個非零常數,這個數列就叫做等比數列(Geometric Sequences)。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。