數學圖形名稱大全?(1)柱體:包括圓柱和棱柱。棱柱又可分為直棱柱和斜棱柱,按底面邊數的多少又可分為三棱柱、四棱柱、N棱柱;棱柱體積都等于底面面積乘以高,即V=SH;(2)錐體:包括圓錐體和棱錐體,棱錐分為三棱錐、那么,數學圖形名稱大全?一起來了解一下吧。
平面圖形,明鬧立體圖形,幾何圖形
(正方形長方形三角形四邊形平行四邊形 菱形 梯形 圓扇形 弓此物形圓環立方體長方體 圓柱 圓臺 棱柱 棱臺 圓錐 棱錐 直線 射線激扒罩 角)
山旅扮基本的平面圖形鎮磨:點、線、角,三角形、四邊形(長方形、正方形、平行四邊形、菱形、梯形)、多邊形、圓等等。 基本的立體圖形:長方體、正方體、圓柱、圓逗灶錐、球,棱柱、棱錐、棱臺、圓臺、多面體等等。
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積=底×高÷2
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四邊形 d,D-對角線長
α-對角線夾角 S=dD/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 S=ah
=absinα
菱形 a-邊長
α-夾角
D-長對角線長
d-短對角線長 S=Dd/2
=a2sinα
梯形 a和b-上、下底長
h-高
m-中位線長 S=(a+b)h/2
=mh
圓 r-半徑
d-直徑 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/耐唯2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圓環 R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑 S=π(R2-r2)
=π(D2-d2)/4
橢圓 D-長軸
d-短軸 S=πDd/4
立方圖形
名稱 符號 面積S和體積V
正方體 a-邊長 S=6a2
V=a3
長方體 a-長
b-寬
c-高 S=2(ab+ac+bc)
V=abc
棱柱 S-底面積
h-高 V=Sh
棱錐 S-底面積
h-高 V=Sh/3
棱臺 S1和S2-上、下底面積
h-高 V=h[S1+S2+(S1S1)1/2]/3
擬柱體 S1-上底面積
S2-下底面積
S0-中截面積
h-高 V=h(S1+S2+4S0)/6
圓柱 r-底半徑
h-高
C—底面周長
S底—底面積
S側—側面積
S表—表面積 C=2πr
S底=πr2
S側=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圓柱 R-外圓半徑
r-內圓半徑
h-高 V=πh(R2-r2)
直圓錐 r-底半徑
h-高 V=πr2h/3
圓臺 r-上底半徑
R-下底半徑
h-高 V=πh(R2+Rr+r2)/3
球 r-半徑
d-直徑 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球臺 r1和r2-球臺上、下底半徑
h-高 V=πh[3(r12+r22)+h2]/6
圓環體 R-環體半徑
D-環體直徑
r-環體截面半徑
d-環體截面直徑 V=2π2Rr2
=π2Dd2/4
桶狀體 D-昌物培桶腹直徑
d-桶底直徑
h-桶高 V=πh(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母線是螞擾拋物線形)
學習必須與實干相結合。每一門科目都有自己的學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初一下冊數學知識點總結
相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。
平行線及其判定
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的性質
性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3兩條平行線被第三條直線所截,明行同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
平移
向左平移a個單位長度,可以得到對應點(x-a,y)
向上平移b個單位長度,可以得到對應點(x,y+b)
向下平移b個單位長度,可以得到對應點(x,y-b)
初一下冊數學復習資料
概念知識
1、單項式:數字與字母的積,叫做單項式。
立體幾何圖形
可以分為以下幾類:
(1)柱體:包括圓柱和棱柱。棱柱又可分為直棱柱和斜棱柱,按底面邊數的多少又可分為三棱柱、四棱柱、N棱耐汪柱;棱柱體積都等于底面面積乘以高,即V=SH;
(2)錐體:包括圓錐體和棱錐體,棱錐分為三棱錐、四棱錐及N棱錐;棱錐體積為;
(3)旋轉體:包括圓柱、圓臺、圓錐、球、球冠、弓環、圓環、堤環、扇環、棗核形等。其表面積公式為:,體積公式為:
(其中L是基圖的周長,S是基圖的面積,R是重心到軸的距離)
(4)截面體:包括棱臺、圓臺、斜截圓柱、斜截棱柱、斜截圓錐、球冠、球缺等。其表面積和體積一般都是根據圖形加減解答。
平面幾何圖形
可分為以下幾類:
(1)圓形:包括正圓,橢圓,多焦點圓——卵圓。
(2)多昌埋仔邊形:三角形、四邊形、五邊形等。
(3)弓形:優弧弓、劣弧弓、拋物線弓等。
(液困4)多弧形:月牙形、谷粒形、太極形、葫蘆形等。
幾何形狀"在學術文獻中的解釋:幾何形狀是指具體描述模型的幾何外形輪廓,通常由一些三角片或多邊形所組成的封閉幾何體。
例如:放在我手中的兩塊石子,一塊我們恰好可以把他稱為幾何形狀,而另一塊一頭為方、一頭為圓的石子,我們難以敘說他究竟是什么樣的形狀。
擴展資料:
幾何圖形的應用非常廣泛,無論在設計、繪畫創作、數學研究中都需要借助幾何圖形進行。
以上就是數學圖形名稱大全的全部內容,(1)圓形:包括正圓,橢圓等;(2)多邊形:三角形、四邊形等;(3)弓形:優弧弓、拋物線弓等;(4)多弧形:月牙形、太極形、葫蘆形等。常見平面圖形的周長和面積公式 1、長方形:面積=長×寬。