初三下冊數學知識點歸納?2020九年級下冊數學知識點歸納篇一 一、平行線分線段成比例定理及其推論:1.定理:三條平行線截兩條直線,所得的對應線段成比例。2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應線段成比例。那么,初三下冊數學知識點歸納?一起來了解一下吧。
初三下冊數學知識點總結2020篇一
一、銳角三角函數
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
二、三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.
泰勒展開式(冪級數展開法)
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
三、解直角三角形
1.直角三角形兩個銳角互余。
2.直角三角形的三條高交點在一個頂點上。
3.勾股定理:兩直角邊平方和等于斜邊平方
四、利用三角函數測高
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問.
如:測不易直接測量的物體的高度、測河寬等慧世,關鍵在于構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的一般過程是:
①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.
初三下冊數學知識點總結2020篇二
半徑與弦長計算,弦心距來中間站。
圓的應用在數學領域中非常的廣泛且常見,下面是我給大家帶來的九年級數學下冊《圓》知識點整理,希望能夠幫助到大家!
九年級數學下冊《圓》知識點整理
第十章 圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆ 內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5. 與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:
初中數學復習提綱
2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關系
初中數學復習提綱1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
初中數學復習提綱1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角: 初中數學復習提綱
內角的一半: 初中數學復習提綱 (右圖)
(解Rt△OAM可求出相關元素, 初中數學復習提綱 、 初中數學復習提綱 等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
初中數學復習提綱4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓拿彎錐的側面展開圖及相關讓凱計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、基本圖形
十、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上坦敏喚的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
【篇一:反比例函數】
形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像橋沖豎性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)
當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)
由于反比例函數的自變量和因變量都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
【篇二:二次函數】
知識點一、平面直角坐標系
1,平面直角坐標系
在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。
【篇一:直線與圓的位置關系】
①直線和圓無公共點,稱相離。AB與圓O相離,d>r。
②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將陪攜x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規定x1
當x=-C/Ax2時,直線與圓相離;
【篇二:旋轉變換】
1.概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
1.解直角三角形
1.1.銳角三角函數
銳角a的正弦、余弦和正切統稱∠a的三角函數。
如果∠a是Rt△ABC的一個銳角,則有
1.2.銳角三角函數的計算
1.3.解直角三角形
在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。
2.直線與圓的位置關系
2.1.直線與圓的位置關系
當直線與圓有兩個公共點時,叫做直線與圓相交;當直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當直線與圓沒有公共點時,叫做直線與圓相離。
直線與圓的位置關系有以下定理:
直線與圓相切的判定定理:
經過半徑的外端并且垂直這條半徑的直線是圓的切線。
圓的切線性質:
經過切點的半徑垂直于圓的切線。
2.2.切線長定理
從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。
切線長定理:過圓外一點所作的圓的兩條切線長相等。
2.3.三角形的內切圓
與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形的三條角平分線的交點。
3.三視圖與表面展開圖
3.1.投影
物體在光線的照射下,在某個平面內形成的影子叫做投影。光線叫做投遲賀橘影線,投影所在的平面叫做投影面。
以上就是初三下冊數學知識點歸納的全部內容,【篇一:直線與圓的位置關系】①直線和圓無公共點,稱相離。AB與圓O相離,d>r。②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d ③直線和圓有且只有一公共點,稱相切。