高一數學示范課?【篇一】高中開學第一課數學教案(高一) 高中一年級的新同學們,當你們踏進高中校門,漫步在優美的校園時,看見老師嚴謹而熱心的教學和師兄、師姐深切的關懷時,我想你們會暗暗決心:爭取學好高中階段的各門學科。那么,高一數學示范課?一起來了解一下吧。
高一數學經典課程教案5篇
高一新生要根據自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。下面我給大家帶來關于高一數學經典課程教案,方便大家學習。
高一數學經典課程教案1
一、教學目標:
1.通過高速公路上的實際例子,引起積極的思考和交流,從而認識到生活中處處可以遇到變量間的依賴關系.能夠利用初中對函數的認識,了解依賴關系中有的是函數關系,有的則不是函數關系.
2.培養廣泛聯想的能力和熱愛數學的態度.
二、教學重點:
在于讓學生領悟生活中處處有變量,變量之間充滿了關系
教學難點:培養廣泛聯想的能力和熱愛數學的態度
三、教學方法:
探究交流法
四、教學過程
(一)、知識探索:
閱讀課文P25頁。實例分析:書上在高速公路情境下的問題。
在高速公路情景下,你能發現哪些函數關系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關系,兩種依賴關系都有函數關系嗎?
問題小結:
1.生活中變量及變量之間的依賴關系隨處可見,并非有依賴關系的兩個變量都有函數關系,只有滿足對于一個變量的每一個值,另一個變量都有確定的值與之對應,才稱它們之間有函數關系。
2.構成函數關系的兩個變量,必須是對于自變量的每一個值,因變量都有確定的y值與之對應。
【 #高一#導語】進入高中后,很多新生有這樣的心理落差,比自己成績優秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應盡快進入學習狀態。 無 高一頻道為正在努力學習的你整理了《高一數學說課稿范例五篇》,希望對你有幫助!
1.高一數學說課稿范例
各位老師:
大家好!我叫XX,來自湖南科技大學。我說課的題目是《算法的概念》,內容選自于新課程人教A版必修3第一章第一節,課時安排為兩個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法分析、學情分析、教學過程分析等五大方面來闡述我對這節課的分析和設計:
一、教材分析
1.教材所處的地位和作用
現代社會是一個信息技術發展很快的社會,算法進入高中數學正是反映了時代的需要,它是當今社會必備的基礎知識,算法的學習是使用計算機處理問題前的一個必要的步驟,它可以讓學生們知道如何利用現代技術解決問題。又由于算法的具體實現上可以和信息技術相結合。因此,算法的學習十分有利于提高學生的邏輯思維能力,培養學生的理性精神和實踐能力。
2.教學的重點和難點
重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉化為算法語言。
【 #高一#導語】高一新生要作好充分思想準備,以自信、寬容的心態,盡快融入集體,適應新同學、適應新校園環境、適應與初中迥異的紀律制度。記住:是你主動地適應環境,而不是環境適應你。因為你走向社會參加工作也得適應社會。以下內容是 無 為你整理的《高一年級數學優秀教案》,希望你不負時光,努力向前,加油!
1.高一年級數學優秀教案
1.教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用.
2.設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標.
3.教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題.
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用.
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美.
4.重點難點
重點:任意角三角函數的定義.
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透.
5.學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念.在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構.
6.教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構.這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用.
7.學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標.
8.教學設計(過程)
一、引入
問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clip_image002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clip_image002[1]是銳角時,clip_image004,線段OP的長度clip_image006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數
學生閱讀教材,并思考:
問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數的定義.并思考:
問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的
并類比函數的研究方法,得出任意角三角函數的定義域和值域。
教師根據學生和自己的條件,以及高中階段學科知識為基礎,找尋一套行之有效的教學方法。下面是由我為大家整理的“高中高一數學教案設計精選5篇”,僅供參考,歡迎大家閱讀本文。
篇一:高中高一數學教案設計精選
教學目標:
(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體
問題,感受集合語言的意義和作用;
教學重點:
集合的基本概念與表示方法。
教學難點:
運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:
一、引入課題
軍訓前學校通知:x月x日x點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。
二、新課教學
(一)集合的有關概念
1.集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。
高一數學第一課:引言與數學思維在高中數學的學習中,高一數學第一課是非常重要的。
高中數學主要學習數列、函數、幾何、概率、統計、微積分和邏輯推理等方面的知識。這些知識是進一步學習和理解數學科學的基礎,也是實際應用中不可或缺的技能。
1、數列:數列是高中數學中的一個重要內容,主要涉及數列的概念、分類、性質、表示方法以及一些特殊的數列,如等差數列和等比數列。學生需要掌握數列的通項公式、遞推公式和求和公式等。
2、函數:函數是高中數學中的一個核心概念,包括函數的概念、表示方法、性質、圖像以及常見的初等函數,如冪函數、指數函數、對數函數和三角函數等。學生需要掌握函數的解析式、定義域、值域、圖像以及函數的單調性、奇偶性等性質。
3、幾何:幾何是高中數學中的另一個重要內容,涉及平面幾何、立體幾何和解析幾何等方面。學生需要掌握基本圖形的性質、面積和體積的求法、以及向量和坐標在幾何中的應用。
4、概率:概率是高中數學中的一個重要分支,主要涉及概率的基本概念、事件的獨立性和互斥性、隨機變量的分布和數字特征等方面。學生需要掌握概率的加法、乘法原理,掌握分布函數和密度函數的求解和應用。
以上就是高一數學示范課的全部內容,高一數學第一課:引言與數學思維 在高中數學的學習中,高一數學第一課是非常重要的。高中數學主要學習數列、函數、幾何、概率、統計、微積分和邏輯推理等方面的知識。這些知識是進一步學習和理解數學科學的基礎。