目錄初中一年級上冊數學電子課本 初中一數學書本上冊 初一數學下冊重點筆記 小學一年級數學目錄上冊圖片 初中一年級數學人教版
初一數學大全
1、運送29.5噸煤,先用一輛載重4噸的汽車運3次,剩下的用一輛載重為中漏2.5噸的貨車運。還要運幾次才能完?
還要運x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
還要運7次才能完
2、一塊梯形田的面積是90平方米,上底是7米,下底是11米,它的高是幾米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某車間計劃四月份生產零件5480個。已生產了9天,再生產908個就能完成生產計劃,這9天中平均每天生產多少個?
這9天中平均每天生產x個
9x+908=5408
9x=4500
x=500
這9天中平均每天生產500個
4、甲乙兩車從相距272千米的兩地同時相向而行,3小時后兩車還相隔17千米。甲每小時行45千米,乙每小時行多少千米?
乙每小時行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小時行40千米
5、某校六年級有兩個班,上學期級數學平均成績是85分。已知六(1)班40人,平均成績為87.1分;六(2)班有42人,平均成績是多少分?
平均成績是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成績是83分
6、學校買來10箱粉筆,用去250盒后,還剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年級共有學生200人,課外活動時,80名女生都去跳繩。男生分成5組去踢足球,平均每組多少人?
平均每組x人
5x+80=200
5x=160
x=32
平均每組32人
8、食堂運來150千克大米,比運來的面粉的3倍少30千克。食堂運來面粉多少千克?
食堂運來面粉x千克
3x-30=150
3x=180
x=60
食堂運來面粉60千克
9、果園里有52棵桃樹,有6行梨樹,梨樹比桃樹多20棵。平均每行梨樹有多少棵?
平均每行梨樹有x棵
6x-52=20
6x=72
x=12
平均每行梨樹有12棵
10、一塊三角形地的面積是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李師傅買來72米布,正好做20件大人衣服和16件兒童衣服。每件大人衣服用2.4米,每件兒童衣服用布多少米?
每件兒童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件兒童衣服用布1.5米
12、3年前母親歲數是女兒的6倍,今年母親33歲,女兒今年幾歲?
女兒今年x歲
30=6(x-3)
6x-18=30
6x=48
x=8
女兒今年8歲
13、一輛時速是50千米的汽車,需要多少時間才能追上2小時前開出的一輛時速為40千米汽車?
需要x時間
50x=40x+80
10x=80
x=8
需要8時間
14、小東到水果店買了3千克的蘋果和2千克的梨共付15元,1千克蘋果比1千克賣告爛梨貴0.5元,蘋果和梨每千克各多少元?
蘋果x
3x+2(x-0.5)=15
5x=16
x=3.2
蘋果:3.2
梨:2.7
15、甲、乙兩車分別從A、B兩地同時出發,相向而行,甲每小時行50千米,乙每小時行40千米,甲比乙早1小時到達中點。甲幾小時到達中點?
甲x小時到達中點
50x=40(x+1)
10x=40
x=4
甲4小時到達中點
16、甲、乙兩人分別從A、B兩地同時出發,相向而行,2小時相遇。如果甲從A地,乙從B地同時出發,同向而行,那么4小時后甲追上乙。已知甲速度是15千米/時,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.兩根同樣長的繩子,第一根剪去15米,第二根比第一根剩下的3倍還多3米。問原來兩根繩子各長幾米?
原來兩根繩子各長x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原來兩根繩子各長21米
18.某校買來7只籃球和10只足球共付248元。已知每只籃球與三只足球價錢相等,問每只籃球和足球各多少元友首?
每只籃球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只籃球:24
每只足球:8
1、運送29.5噸煤,先用一輛載重4噸的汽車運3次,剩下的用一輛載重為2.5噸的貨車運。還要運幾次才能完?
還要運x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
還要運7次才能完
2、一塊梯形田的面積是90平方米,上底是7米,下底是11米,它的高是幾米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某車間計劃四月份生產零件5480個。已生產了9天,再生產908個就能完成生產計劃,這9天中平均每天生產多少個?
這9天中平均每天生產x個
9x+908=5408
9x=4500
x=500
這9天中平均每天生產500個
4、甲乙兩車從相距272千米的兩地同時相向而行,3小時后兩車還相隔17千米。甲每小時行45千米,乙每小時行多少千米?
乙每小時行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小時行40千米
5、某校六年級有兩個班,上學期級數學平均成績是85分。已知六(1)班40人,平均成績為87.1分;六(2)班有42人,平均成績是多少分?
平均成績是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成績是83分
6、學校買來10箱粉筆,用去250盒后,還剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年級共有學生200人,課外活動時,80名女生都去跳繩。男生分成5組去踢足球,平均每組多少人?
平均每組x人
5x+80=200
5x=160
x=32
平均每組32人
8、食堂運來150千克大米,比運來的面粉的3倍少30千克。食堂運來面粉多少千克?
食堂運來面粉x千克
3x-30=150
3x=180
x=60
食堂運來面粉60千克
9、果園里有52棵桃樹,有6行梨樹,梨樹比桃樹多20棵。平均每行梨樹有多少棵?
平均每行梨樹有x棵
6x-52=20
6x=72
x=12
平均每行梨樹有12棵
10、一塊三角形地的面積是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李師傅買來72米布,正好做20件大人衣服和16件兒童衣服。每件大人衣服用2.4米,每件兒童衣服用布多少米?
每件兒童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件兒童衣服用布1.5米
12、3年前母親歲數是女兒的6倍,今年母親33歲,女兒今年幾歲?
女兒今年x歲
30=6(x-3)
6x-18=30
6x=48
x=8
女兒今年8歲
13、一輛時速是50千米的汽車,需要多少時間才能追上2小時前開出的一輛時速為40千米汽車?
需要x時間
50x=40x+80
10x=80
x=8
需要8時間
14、小東到水果店買了3千克的蘋果和2千克的梨共付15元,1千克蘋果比1千克梨貴0.5元,蘋果和梨每千克各多少元?
蘋果x
3x+2(x-0.5)=15
5x=16
x=3.2
蘋果:3.2
梨:2.7
15、甲、乙兩車分別從A、B兩地同時出發,相向而行,甲每小時行50千米,乙每小時行40千米,甲比乙早1小時到達中點。甲幾小時到達中點?
甲x小時到達中點
50x=40(x+1)
10x=40
x=4
甲4小時到達中點
16、甲、乙兩人分別從A、B兩地同時出發,相向而行,2小時相遇。如果甲從A地,乙從B地同時出發,同向而行,那么4小時后甲追上乙。已知甲速度是15千米/時,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.兩根同樣長的繩子,第一根剪去15米,第二根比第一根剩下的3倍還多3米。問原來兩根繩子各長幾米?
原來兩根繩子各長x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原來兩根繩子各長21米
18.某校買來7只籃球和10只足球共付248元。已知每只籃球與三只足球價錢相等,問每只籃球和足球各多少元?
每只籃球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只籃球:24
每只足球:8
1、運一批貨物,一直過去兩次租用這兩臺大貨車情況:第一次 甲種車2輛,乙種車3輛,運了15.5噸 第二次 甲種車5輛 乙種車6輛 運了35噸貨物 現租用該公司3輛甲種車和5輛乙種車 如果按每噸付運費30元 問貨主應付多少元
解:設甲可以裝x噸,乙可以裝y噸,則
2x+3y=15.5
5x+6y=35
得到x=4
y=2.5
得到(3x+5y)*30=735
2、現對某商品降價10%促銷.為了使銷售總金額不變.銷售量要比按原價銷售時增加百分之幾?
解:原價銷售時增加X%
(1-10%)*(1+X%)=1
X%=11.11%
為了使銷售總金額不變.銷售量要比按原價銷售時增加11.11%
3、1個商品降價10%后的價格恰好比原價的一半多40元,問該商品原價是多少?
解:設原價為x元
(1-10%)x-40=0.5x
x=100
答:原價為100元
4、有含鹽8%的鹽水40克,要使鹽水含鹽20%,則需加鹽多少克?
解:設加鹽x克
開始純鹽是40*8%克
加了x克是40*8%+x
鹽水是40+x克
濃度20%
所以(40*8%+x)/(40+x)=20%
(3.2+x)/(40+x)=0.2
3.2+x=8+0.2x
0.8x=4.8
x=6
所以加鹽6克
5、某市場雞蛋買賣按個數計價,一商販以每個0.24元購進一批雞蛋,但在販運途中不慎碰碎了12個,剩下的蛋以每個0.28元售出,結果仍獲利11.2元。問該商販當初買進多少個雞蛋?
解:設該商販當初買進X個雞蛋.
根據題意列出方程:
(X-12)*0.28-0.24X=11.2
0.28X-3.36-0.24X=11.2
0.04X=14.56
X=364
答:該商販當初買進364個雞蛋.
6、某車間有技工85人,平均每天每人可加工甲種部件15個或乙種部件10個,2個甲種部件和3個乙種部件配一套,問加工甲、乙部件各安排多少人才能使每天加工的甲、乙兩種部件剛好配套?
解:設安排生產甲的需要x人,那么生產乙的有(85-x)人
因為2個甲種部件和3個乙種部件配一套,所以
所以生產的甲部件乘以3才能等于乙部件乘以2的數量
16*x*3=10*(85-x)*2
解得:x=25
生產甲的需要25人,生產乙的需要60人!
7、紅光電器商行把某種彩電按標價的八折出售,仍可獲利20%。已知這種彩電每臺進價1996元。那么這種彩電每臺標價應為多少元?
解:設標價為X元.
80%X=1996×(1+20%)
80%X= 2395.2
X=2994
8、某商店把某種商品按標價的8折出售,可獲利20%。若該商品的進價為每件22元,則每件商品的標價為多少元?
解::設標價為X元.
80%X=22×(1+20%)
80%X= 26.4
X=33
9、在一段雙軌鐵道上,兩列火車迎頭駛過,A列車車速為20m/s,B列車車速為24m/s,若A列車全長180m,B列車全長160m,問兩列車錯車的時間為多少秒?
解:(180+160)/(20+24)=7.28秒
10、甲乙兩名同學在同一道路上從相距5km的兩地同向而行,甲的速度為5km/h,乙的速度為3km/h,甲同學帶著一條狗,當甲追乙時,狗先追乙,再返回遇上甲,又返回追乙,……直到甲追到乙為止。已知狗的速度為15km/h,求此過程中,狗跑的總路程。
解:首先要明確,甲乙的相遇時間等于狗來回跑的時間
所以狗的時間=甲乙相遇時間=總路程/甲乙速度和
=5km/(5km/h+3km/h)=5/8h
所以狗的路程=狗的時間*狗的速度=5/8h*15km/h=75/8km
所以甲乙相遇狗走了75/8千米
一天小紅和小亮2人利用溫度差測量某山峰的高度,小紅在山頂側的溫度是-1度 小亮此時在山腳下測得的溫度是5度 已知該地
區的高度每增加100M,氣溫大約下降0.6度 這座山峰的高度是?
當氣溫每上升1度時,某種金屬絲伸長0.002MM 反之, 當溫度每下降1度時,金屬絲縮短0.002MM。把15度的金屬絲加熱到60度,在使它冷卻降溫到5度,金屬絲的長度經歷了怎樣的變化? 最后的長度比原來長度伸長多少?
一種出租車的收費方式如下:4千米以內10元,4千米至15千米部分每千米加收1.2元,15千米以上部分每千米加收1.6元,某乘客要乘出租車去50千米處的某地.
(1)如果乘客中途不換車要付車費多少元?
(2)如果中途乘客換乘一輛出租車,他在何處換比較合算?算出總費用與(1)比較.
已知開盤是25.35,收盤是27.38,求開盤都收盤上漲的百分比.
(27.38-25.35)×100%÷25.35≈8%
購票人 50人以下 50-100人 100人以上
每人門票價 12元 10元 8元
現有甲乙兩個旅游團,若分別購票,兩團應付門票費總計1142元,如合在一起作為一個團體購票,只要門票費864元。兩個旅游團各有幾人?
【解】 因為864>8×100,可知兩團總人數超過100人,因而兩團總人數為864÷8=108(人).
因為108×10=1080<1142,108×12=1296>1142.所以每個團的人數不會都大于50人,也不會都小于50人,即一個團大于50人,另一個團少于50人.
假設兩團都大于 50人,則分別付款時,應付108×10=1080(元),實際多付了1142-1080=62(元).這是少于50人的旅游團多付的錢.
因此,這個旅游團的人數為:62÷(12-10)=31(人),另一個旅游團人數為108-31=77(人).
1,有一只船在水中航行不幸漏水。當船員發現時船里已經進了一些水,且水仍在勻速進入船內。若8人淘水,要用5小時淘完;若10人淘水,要用3小時淘完。現在要求2.5小時淘完,要用多少人淘水?
答案:11個人
解:設船的總容積為a,船進水的速度為b,人淘水的速度為c,設要用x人淘水能2.5小時淘完.
8*c*5=1/2*a+5*b(1)
10*c*3=1/2*a+3*b (2)
x*c*2.5=1/2*a+2.5*b(3)
(1)-(2)得到b=5c (4),把b=5c代入(1)(2),然后(1)-(2)得到1/2a=15c (5)
把(4)(5)代入(3),最后整理的x=11
2.快、慢兩輛車從快到慢車,快車行到全程2/3,慢車距終點180千米,兩車按原速繼續行駛,快到到達終點,慢車行駛了全程6/7,求全程多少米?
答案:快車行完全程,慢車走了全程的6/7;
同比可知:
快車行完全程的2/3時,慢車應走了6/7*2/3(即4/7),還剩余3/7,全程的3/7也就是已知條件180,全程即為180/(3/7)=420!
3,某銀行建立大學生助學貸款,6年期的貸款年利率為百分之六,貸款利息的百分之五十由國家財政貼補。某大學生預計6年后能一次性償還2萬元,則他現在可以貸款的數額是多少元?(精確的1元)
答案:設他現在可以貸款的數額是x元。
0.5(0.06x*6)+x=20000
0.18x+x=20000
1.18x=20000
x≈16949
4,將△ABC的邊延長至A1,使B為線段A A1的中點,同樣方法,延長邊BC得到點B1,延長邊得到點C1,得到△A1 B1 C1稱為第一次擴展,再將△A1 B1 C1按上述方法向外擴展得到△A2 B2 C2,如此,進行下去,得到△An Bn Cn,研究△An Bn Cn與△ABC的面積關系。(字數不少于200)
答案:連接A B1
∵AC=AC1
∴S△B1AC=S△B1AC1
又∵CB1=CB
∴S△B1AC=S△ABC
∴S△B1C1C=2S△ABC
同理可得S△AA1C1=S△BA1B1=2S△ABC
∴S△A1B1C1=7S△ABC
同理S△A2B2C2=7S△A1B1C1=49S△ABC
∴S△AnBnCn=7^nS△ABC
5,將△ABC的邊延長至A1,使B為線段A A1的中點,同樣方法,延長邊BC得到點B1,延長邊得到點C1,得到△A1 B1 C1稱為第一次擴展,再將△A1 B1 C1按上述方法向外擴展得到△A2 B2 C2,如此,進行下去,得到△An Bn Cn,研究△An Bn Cn與△ABC的面積關.
答案:設三角形ABC三個角分別為α、β、γ按題意畫出三角形DEF,則可得DEF的三個角分別為180-(180-α)/2-(180-β)/2=(α+β)/2
180-(180-γ)/2-(180-β)/2=(γ+β)/2
180-(180-α)/2-(180-γ)/2=(α+γ)/2
在三角形ABC內一定存在α+β<180
γ+β<180
α+γ<180
所以在三角形DEF中三個角都小于90所以DEF為銳角三角形
小紅抄寫一份材料,每分鐘抄寫30個字,若干分鐘可以抄完,當她抄完這份材料的五分之二時,決定提高50%的效率,結果提前20分鐘抄完,求這份材料有多少字?
設材料原先x分鐘可以抄完,則有
30x=30*(2/5x)+30*(1+50%)*(3/5x-20)
得出x=100
這份材料有3000字
看看這個行不?
第一章豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
圓柱
柱
生活中的立體圖形 球棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
(按名稱分)錐圓錐
棱錐
4、棱柱及其有關概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。
側棱:相鄰兩個側面的交線叫做側棱。
n棱柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。
從一個n邊形的同一個頂點出發,分別連接這個頂點與其余各頂點,可以把這個n邊形分割成(n-2)個三角形。
弧:圓上A、B兩點之間的部分叫做弧。
扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。
第二章有理數及其運算
1、有理數的分類
正有理數
有理數 零
負有理數
或整數
有理數
分數
2、相反數:只有符號不同的兩個數叫做互為相反數,零的相反數是零
3、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。任何一個有理數都可以用數軸上的一個點來表示。解題時要真正掌握數形結合的思想,并能靈活運用。
4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。
5、絕對值:在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。
6、有理數比較大小:正數大于零,負數小于零,正數大于一切負數;數軸上的兩個點所表示的數,右邊的總比左邊的大;兩個負數,絕對值大的反而小。
7、有理數的運算:
(1)五種運算:加、減、乘、除、乘方
(2)有理數的運算順序
先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。
(3)運算律
加法交換律
加法結合律
乘法交換律
乘法結合律
乘法對加法的分配律
第三章 字母表示數
1、代數式
用運算符號把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
2、同類項
所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。
3、合并同類項法則:把同類項的系數相加,字母和字母的指數不變。
4、去括森首號法則
(1)括號前是銷陸“+”,把括號和它前面的“+”號去掉后,原括號里各項的符號都不改變。
(2)括號前是“﹣”此斗數,把括號和它前面的“﹣”號去掉后,原括號里各項的符號都要改變。
5、整式的運算:
整式的加減法:(1)去括號;(2)合并同類項。
第四章平面圖形及其位置關系
1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點。
2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點。
3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點。
4、點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示。
一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面)。
一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示。
5、點和直線的位置關系有兩種:
①點在直線上,或者說直線經過這個點。
②點在直線外,或者說直線不經過這個點。
6、直線的性質
(1)直線公理:經過兩個點有且只有一條直線。
(2)過一點的直線有無數條。
(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。
(4)直線上有無窮多個點。
(5)兩條不同的直線至多有一個公共點。
7、線段的性質
(1)線段公理:兩點之間的所有連線中,線段最短。
(2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。
(3)線段的中點到兩端點的距離相等。
(4)線段的大小關系和它們的長度的大小關系是一致的。
8、線段的中點:
點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。
9、角:
有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊。
或:角也可以看成是一條射線繞著它的端點旋轉而成的。
10、平角和周角:一條射線繞著它的端點旋轉,當終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時,所形成的角叫做周角。
11、角的表示
角的表示方法有以下四種:
①用數字表示單獨的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。
④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。
12、角的度量
角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把 1’ 的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
13、角的性質
(1)角的大小與邊的長短無關,只與構成角的兩條射線的幅度大小有關。
(2)角的大小可以度量,可以比較
(3)角可以參與運算。
14、角的平分線
從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
15、平行線:
在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。
注意:
(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。
16、平行線公理及其推論
平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。
補充平行線的判定方法:
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內,垂直于同一條直線的兩直線平行。
(3)平行線的定義。
17、垂直:
兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。
18、垂線的性質:
性質1:平面內,過一點有且只有一條直線與已知直線垂直。
性質2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。
19、點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。
20、同一平面內,兩條直線的位置關系:相交或平行。
第五章一元一次方程
1、方程
含有未知數的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數的值叫做方程的解。
3、等式的性質
(1)等式的兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
(2)等式的兩邊同時乘以同一個數((或除以同一個不為0的數),所得結果仍是等式。
4、一元一次方程
只含有一個未知數,并且未知數的次數是1的整式方程叫做一元一次方程。
5、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數的系數化為1
第六章生活中的數據
1、科學記數法
一般地,一個大于10的數可以表示成 的形式,其中 ,n是正整數,這種記數方法叫做科學記數法。
2、扇形統計圖及其畫法:
扇形統計圖:利用圓與扇形來表示總體與部分的關系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。
畫法:
(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應的扇形圓心角的度數與360的比)。
(2)計算各個扇形的圓心角(頂點在圓心的角叫做圓心角)的度數。
(3)在圓中畫出各個扇形,并標上百分比。
3、各種統計圖的優缺點
條形統計圖:能清楚地表示出每個項目的具體數目。
折線統計圖:能清楚地反映事物的變化情況。
扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。
第七章 可能性
1、確定事件和不確定事件
(1 )、確定事件
必然事件:生活中,有些事情我們事先能肯定它一定會發生,這些事情稱為必然事件。
不可能事件:有些事情我們事先能肯定它一定不會發生,這些事情稱為不可能事件。
(2)、不確定事件:
有些事情我們事先無法肯定它會不會發生,這些事情稱為不確定事件
(3)、
必然事件
確定事件
事件 不可能事件
不確定事件
2、不確定事件發生的可能性
一般地,不確定事件發生的可能性是有大小的。
必然事件發生的可能性是1
不可能事件發生的可能性是0
第一章 有理數
一、知識框架
二.知識概念
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反肆鄭數的和為0 ? a+b=0 ? a、b互為相反數.
裂塌頌4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方衫如的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題.
體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
第二章 整式的加減
一.知識框架
二.知識概念
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數。
通過本章學習,應使學生達到以下學習目標:
1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。
2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。
3. 理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。
4.能夠分析實際問題中的數量關系,并用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
第三章 一元一次方程
一.知識框架
二.知識概念
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
2.一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).
3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數化為1 …… (檢驗方程的解).
4.列一元一次方程解應用題:
(1)讀題分析法:………… 多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法: ………… 多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間 ;
(2)工程問題: 工作量=工效·工時 ;
(3)比率問題: 部分=全體·比率 ;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,
S正方形=a2,S環形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
初中數學知識點
京教版 七上
第一章 走進數學世界
一 我們周圍的圖形世界
1.1生活中的圖形
二 走進“數”的世界
1.2 我們周圍的“數”
三 現代計算簡介
1.3 計算的開發
1.4科學計算器的使用
第二章 對數的認識的發展
一 對有理數的認識
2.1 負數的引入
2.2 用數軸上的點表示有理數
2.3 相反數和絕對值
二 有理數的四則運算
2.4 有理數的加法
2.5 有理數的減法
2.6 有理數加減法的混合運算
2.7 有理數的乘法
2.8 有理數的除法
2.9 有理數的乘方
2.10 有理數的混合運算
2.11 有效數字和科學計數法
2.12 用計算器做有理數的混合運算
第三章 一元一次方程
一 等式和方程
3.1 字母表示數
3.2 同類項與合并同類項
3.3 等式與方程
3.4 等式的基本性質
二 一元一次方程和它的解法
3.5 一元一次方程
三 一元一次方程的應用
3.6 列方程解應用題
第四章 簡單的幾何圖形
一 對圖形的認識
4.1 平面圖形與立體圖形
4.2 某些立體圖形的展開圖
4.3 從不同方向觀察立體圖形
二 直線、射線、線段
4.4 點、線、面、體
4.5 直線
4.6 射線
4.7 線段
三 角
4.8 角及其表示
4.9 角的分類
4.10 角的度量
4.11 用科學計算器進行角的換算
4.12 角平分線
四 兩條直線的位置關系
4.13 兩條直線的位置關系
4.14 相交線與平行線
4.15 用計算機繪圖
京教版 七下
第五章 一元一次不等式和一元一次不等式組
5.1 不等式
5.2 不等式的基本性質
5.3 不等式的解集
5.4 一元一次不等式及其解法
5.5 一元一次不等式組及其解法
第六章 二元一次方程組
6.1 二元一次方程和它的解
6.2 二元一次方程組跡殲磨和它的解
6.3 用代入消元法解二元一次方程組
6.4 用加減消元法解二元一次方程組
6.5 二元一次方程組的應用
第七章 整式的運算
7.1 整式的加減法
7.2 冪的運算
7.3 整式的乘法
7.4 乘法公式
7.5 整式的除法
第八章 觀察、猜想與證明
8.1 觀察
8.2 實驗
8.3 歸納
8.4 類比
8.5 猜想
8.6 證明
8.7.1 余角、補角
8.7.2 對頂角
8.7.3 平行線
第九章 因式分解
9.1 因式分解
9.2 提取公因式法
9.3 運用公式法
第十章 數據的收集與表示
10.1 總體與樣本
10.2 數據的收集與整理
10.3 數據的表示
10.4 用計算機繪制統計圖
10.5 平均數
10.6 用科學計數器求平均數
10.7 眾數
10.8 中位數
京教版 八上
第十一章 分式
11.1 分式
11.2 分式的基本性質改陪
11.3 分式的乘除法
11.4 分式的加減法
11.5 可化為一元一次方程的分式方程及其應用
第十二章 實數和二次根式
12.1 平方根
12.2 立方根
12.3 用科學計算器開方
12.4 無理數與實數
12.5 二次根式及其性質
12.6 二次根式的乘除法
12.7 二次根式的加減法
第十三姿斗章 三角形
13.1三角形
13.2三角形的性質
13.3三角形中的主要線段
13.4全等三角形
13.5全等三角形的判定
13.6等腰三角形
13.7直角三角形
13.8基本作圖
13.9逆命題、逆定理
13.10 軸對稱和軸對稱圖形
13.11 勾股定理
13.12 勾股定理的逆定理
第十四章事件與可能性
14.1 確定事件與不確定事件
14.2 事件發生的可能性
14.3 求簡單事件發生的可能性
京教版 八下
第十五章 一次函數
15.1 函數
15.2 函數的表示法
15.3 函數圖象的畫法
15.4 一次函數和它的解析式
15.5 一次函數的圖象
15.6 一次函數的性質
15.7 一次函數的應用
第十六章 四邊形
16.1 多邊形
16.2 平行四邊形和特殊的平行四邊形
16.3 平行四邊形的性質與判定
16.4 特殊的平行四邊形的性質與判定
16.5 三角形中位線定理
16.6 中心對稱圖形
16.7 梯形
16.8 等腰梯形與直角梯形
第十七章 一元二次方程
17.1 一元二次方程
17.2 一元二次方程的解法
17.3 列方程解應用問題
第十八章 方差與頻數分布
18.1 極差、方差與標準差
18.2 用計算器計算標準差和方差
18.3 頻數分布表與頻數分布圖
京教版 九上
第十九章 相似形
19.1 比例線段
19.2 黃金分割
19.3 平行線分三角形兩邊成比例
19.4 相似多邊形
19.5 相似三角形的判定
19.6 相似三角形的性質
19.7 應用舉例
第二十章 二次函數和反比例函數
20.1 二次函數
20.2 二次函數的圖象
20.3 二次函數解析式的確定
20.4 二次函數的性質
20.5 二次函數的一些應用
20.6 反比例函數
20.7 反比例函數的圖象、性質和應用
第二十一章 解直角三角形
21.1 銳角三角函數
21.2 銳角的三角函數值
21.3 用計算器求銳角三角函數值
21.4 解直角三角形
21.5 應用舉例
第二十二章 圓(上)
22.1 圓的有關概念
22.2 過三點的圓
22.3 圓的對稱性
22.4 圓周角
第二十三章 概率的求法與應用
23.1 求概率的方法
23.2 概率的簡單應用
京教版 九下
第二十四章 圓(下)
24.1 直線和圓的位置關系
24.2 圓的切線
24.3 圓和圓的位置關系
24.4 正多邊形的有關計算
第二十五章 圖形的變換
25.1 平移變換
25.2 旋轉變換
25.3 軸對稱變換
25.4 位似變換
第二十六章 投影、視圖與展開圖
26.1 中心投影與平行投影
26.2 簡單幾何體的三視圖
26.3 簡單幾何體的平面展開圖
第二十七章 探究數學問題的一些方法
27.1 探索數學問題的一些方法
27.2 探索數學問題舉例
第二十八章 數學應用的一般思路
28.1 數學應用的一般思路
28.2 數學應用舉例
北師大版初中一年級數學上冊知識點篇一
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:
絕對值的問題經常分類討論;
(3)a|是重要的非負數,啟跡橡即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
北師大版初中一年級數學上冊知識點篇二
二元一次方程組
1.二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一悄旁般說二元一次方程有無數個解.
2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡單是關鍵.
※5.一次方程組的應用:
(1)對于一個應用題設出的未知數越多,列方程組可能州坦容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;
(3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.
一元一次不等式(組)
1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.
2.不等式的基本性質:
不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;
不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;
不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.
3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.
4.一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.
北師大版初中一年級數學上冊知識點篇三
整式的加減
一、代數式
1、用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
2、用數值代替代數式里的字母,按照代數式里的運算關系計算得出的結果,叫做代數式的值。
二、整式
1、單項式:
(1)由數和字母的乘積組成的代數式叫做單項式。
(2)單項式中的數字因數叫做這個單項式的系數。
(3)一個單項式中,所有字母的指數的和叫做這個單項式的次數。
2、多項式
(1)幾個單項式的和,叫做多項式。
(2)每個單項式叫做多項式的項。
(3)不含字母的項叫做常數項。
3、升冪排列與降冪排列
(1)把多項式按x的指數從大到小的順序排列,叫做降冪排列。
(2)把多項式按x的指數從小到大的順序排列,叫做升冪排列。
三、整式的加減
1、整式加減的理論根據是:去括號法則,合并同類項法則,以及乘法分配率。
去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項都改變符號。
2、同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項。
合并同類項:
(1)合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。
(2)合并同類項的法則:同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
(3)合并同類項步驟:
a.準確的找出同類項。
b.逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變。
c.寫出合并后的結果。
(4)在掌握合并同類項時注意:
a.如果兩個同類項的系數互為相反數,合并同類項后,結果為0.
b.不要漏掉不能合并的項。
c.只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
說明:合并同類項的關鍵是正確判斷同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項。
4、代數式求值的一般步驟:
(1)代數式化簡
(2)代入計算
(3)對于某些特殊的代數式,可采用“整體代入”進行計算。
圖形的初步認識
一、立體圖形與平面圖形
1、長方體、正方體、球、圓柱、圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
2、長方形、正方形、三角形、圓等都是平面圖形。
3、許多立體圖形是由一些平面圖形圍成的,將它們適當地剪開,就可以展開成平面圖形。
二、點和線
1、經過兩點有一條直線,并且只有一條直線。
2、兩點之間線段最短。
3、點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。
4、把線段向一方無限延伸所形成的圖形叫做射線。
三、角
1、角是由兩條有公共端點的射線組成的圖形。
2、繞著端點旋轉到角的終邊和始邊成一條直線,所成的角叫做平角。
3、繞著端點旋轉到終邊和始邊再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;把1度的角60等分,每份叫做1分的角,記作1′;把1分的角60等分,每份叫做1秒的角,記作1″。
四、角的比較
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。類似的,還有叫的三等分線。
五、余角和補角
1、如果兩個角的和等于90(直角),就說這兩個角互為余角。
2、如果兩個角的和等于180(平角),就說這兩個角互為補角。
3、等角的補角相等。
4、等角的余角相等。
六、相交線
1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
2、注意:
⑴垂線是一條直線。
⑵具有垂直關系的兩條直線所成的4個角都是90。
⑶垂直是相交的特殊情況。
⑷垂直的記法:a⊥b,AB⊥CD。
3、畫已知直線的垂線有無數條。
4、過一點有且只有一條直線與已知直線垂直。
5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。
6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
七、平行線
1、在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。
2、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。
3、如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
4、判定兩條直線平行的方法:
(1)兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
(2)兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。
(3)兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。
5、平行線的性質
(1)兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
(2)兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
(3)兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。