初二數學函數講解?一般地,形如y=kx(k為常數,且k≠0)的函數叫做正比例函數.其中k叫做比例系數。一般地,形如y=kx+b(k,b為常數,且k≠0)的函數叫做一次函數.當b=0時,y=kx+b即為y=kx,所以正比例函數,是一次函數的特例.八、那么,初二數學函數講解?一起來了解一下吧。
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能腔態粗力,也加深對公式的理解。還有就是大量練習題目?;旧厦空n之后都要做課余練習的題目(不包括老師的作業)。數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以后應深思一下伍鎮進行歸納,做到一課一得.閱讀:閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對于例題應與同類參考書聯系起來一同學習,博采眾長,增長知識,發展思維.探究:要學會思考,在問題解決之后再探求一些新的方法,學會從不同角度去思考問題,甚至改變條件或結論去發現新問題,經過一段學習,應當將自己的思路整理一下,以形成自己的思維規律.作業:要先復習后作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學.總之,在學習閉喊數學的過程中,要認識到數學的重要性,充分發揮自己的主觀能動性,從小的細節注意起,養成良好的數學學習習慣,進而培養思考問題、分析問題和解決問題的能力,最終把數學學好.
初二數學一次函數知識點歸納有:
1、正比例函數和一次函數的概念
基礎知識歸納:一般地,如果y=kx+b(k,b是常數,k≠0),那么y叫做x的一次函數。特別地,當一次函數y=kx+b中的b為0時,y=kx(k為常數,k≠0)。這時,y叫做x的正比例函數。
基本方法歸納:判斷一個函數是否是一次函數關鍵是看它的k是否不為0和自變量指數是否為1;而要判斷是否為正比例函數還要在一次函數基礎上加上b=0這個條件。
2、一次函數的圖像
基礎知識歸納:所有一次函數的圖像都是一條直線;一次函數y=kx+b的圖像是經過點(0,b)的直線。
正比例函數y=k/x的圖像是經過原點(0,0)的直線。
k>0,b>0時,圖像經過一、二、三象限,y隨x的增大而增大。
k>0,b<0時,圖像經過一、三、四象限,y隨x的增大而增大。
k<銷亂告0,b>0時,圖像經過一、二、四象限,y隨x的增大而減小。
k<0,b<0時,圖像經過二、三、四象限,y隨x的增大而減小。
當b=0時,一次函數變為正比例函數,正比例函數是一次函數的特例。
基本方法歸納:一次函數y=kx+b是由正比例函數y=kx上下平移得到的,要判斷一次函數經過的象限,再由b的正負得向上平移還是向下平移,從而得出所過象限。
函數有自變量
常量
自變量的函數組成
假如你每小時走1千米
走5小時
那么一共走了5千米
則1千米/小時 是不變的,所以是常量虧升
當時間變化時`你走的路程沖裂也會隨著時間的變化而變化
X的銷判老函數有且只有唯一的數與其對應
就是一個有一個自變量的值,沒沖必定有一個通過一定的關系得到的因變量的值與其對好察友應。
例如y=x,任意給一個在x允許取的值,就有一個y值和友槐他對應。
1、函數桐李概念:
在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說x是自變量,y是x的函數。
2、一次函數和正比例函數的概念:
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變量),特別地,當b=0時,稱y是x的正比例函數。
說明:(1)一次函數的自變量的取值范圍察陪是一切實數,但在實際問題中要根據函數的實際意義來確定。
(2)一次函數y=kx+b(k,b為常數,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意義相同,即自變量x的次數為1,一次項系數k必須是不為零的常數,b可為任意常數。
(3)當b=0,k≠0時,y=b仍是一次函數。
(4)當b=0,k=0時,它不是一次函數。
3、一次函數的圖象(三步畫圖象)
由于一次函數y=kx+b(k,b為常數,k≠0)的圖象是一條直線,所以一次函數y=kx+b的圖象也稱為直線y=kx+b。
由于兩點確定一條直線,因此在今后作一次函數圖象時,只要描出適合關系敗輪蠢式的兩點,再連成直線即可,一般選取兩個特殊點:直線與y軸的交點(0,b),直線與x軸的交點(-,0)。
以上就是初二數學函數講解的全部內容,1、函數概念:在一個變化過程中有兩個變量x、y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說x是自變量,y是x的函數。2、一次函數和正比例函數的概念:若兩個變量x,y間的關系式可以表示成y=kx+b(k。