初三數學下冊?另外要充分利用好課堂這短短的45分鐘的時間,盡量在課上將所學習的知識吸收,這樣回到家后才能進一步展開接下來的學習,節約時間。初三數學學習方法二 讀題時候的認真也是很重要的,想必大家都有這樣的經歷,在做題的時候,那么,初三數學下冊?一起來了解一下吧。
九年級下冊知識點歸納包括二次函數、相似、銳角三角形、投影與視圖共四章內容, 主要總結了這幾個單元的重點和難點的內容,是初三同學們和中考考生的必備資料!
第二十六章二次函數
26.1 二次函數及其圖像
二次函數(quadratic function)是指未知數的最高次數為二次的多項式函數。二次函數可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。
一般的,自變量x和因變量y之間存在如下關系:
一般式
y=ax∧2;+bx+c(a≠0,a、b、c為常數),頂點坐標為(-b/2a,-(4ac-b∧2)/4a) ;
頂點式
y=a(x+m)∧2+k(a≠0,a、m、k為常數)或y=a(x-h)∧2+k(a≠0,a、h、k為常數),頂點坐標為缺喊派(-m,k)對稱軸為x=-m,頂點的位置特征和圖像的開口方向與函數y=ax∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;
交點式
y=a(x-x1)(x-x2) [僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線] ;
重要概念:a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。
學習這件事不在乎有沒有人教你,最重要的是在于你自己有沒有覺悟和恒心。任何科目學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的九年級數學知識點,希望對大家有所幫助。
九年級數學知識點反比例函數
形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數耐春汪的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)
當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)
由于反比例函數的自變量和因變量都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。
1.初三數學下冊期末知識點總結
因式分解的方法
1.十字相乘法
(1)把二次項系數和常數項分別分解因數;
(2)嘗試十字圖,使經過十字交叉線相乘后所得的數的和為一次項系數;
(3)確定合適的十字圖并寫出因式分解的結果;
(4)檢驗。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個因式;
①找公因式可按照確定公因式的方法先確定系數再確定字母;
②提公因式并確定另一個因式,注意要確定另一個因式,可用原多項式除以公因式,所得的商即是提公因式后剩下的一個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另一個因式;
③提完公因式后,另一因式的項數與原多項式的項數相同。
3.待定系數法
(1)確定所求問題含待定系數的一般解析式;
(2)根據恒等條件,列出一組含待定系數的慎辯散方程;
(3)解方程或消去待定系數,從而使問題得到解決。
2.初三數學下冊期末知識點總結
在直角三角形中
sin@代表對邊比斜邊
cos@代表鄰邊比斜邊
tan@代表對邊比鄰邊
cot@代表鄰邊比對邊
同角三角函數的基本關系式
倒數關系:商的關系:平方關系:
tancot=1
sincsc=1
cossec=1sin/cos=tan=sec/csc
cos/sin=cot=csc/secsin2+cos2=1
1+tan2=sec2
1+cot2=csc2
誘導公式
sin(-)=-sin
cos(-)=costan(-)=-tan
cot(-)=-cot
sin(/2-)=cos
cos(/2-)=sin
tan(/2-)=cot
cot(/2-)=tan
sin(/2+)=cos
cos(/2+)=-sin
tan(/2+)=-cot
cot(/2+)=-tan
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
sin(3/2-)=-cos
cos(3/2-)=-sin
tan(3/2-)=cot
cot(3/2-)=tan
sin(3/2+)=-cos
cos(3/2+)=sin
tan(3/2+)=-cot
cot(3/2+)=-tan
sin(2)=-sin
cos(2)=cos
tan(2)=-tan
cot(2)=-cot
sin(2k)=sin
cos(2k)=cos
tan(2k)=tan
cot(2k)=cot
3.初三數學下冊期末知識點總結
知識點1.概念
把形狀相同的圖形叫做相似圖形。
課堂臨時報佛腳,不如課前預習好。其實任何學科都是一樣的,學習任何一門學科,勤奮都是最好的學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的九年級數學知識點,希望對大家有所幫助。
九年級下冊數學知識點歸納圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣李神弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
6.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心塌卜角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.切線的性質(重點)
2.切線的判定定理(重點)
3.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:初中數學復習提綱
內角的一半:初中數學復習提綱(右圖)
(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關哪衫虧計算
初三下冊數學知識點總結一、銳角三角函數
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
二、三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.
泰勒展開式(冪級數展開法)
f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...
三、解直角三角形
1.直角三角形兩個銳角互余。
初三下冊數學知識點總結2020篇一
一、銳角三角函數
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
二、三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.
泰勒展開式(冪級數展開法)
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+...
三、解直角三角形
1.直角三角形兩個銳角互余。
2.直角三角形的三條高交點在一個頂點上。
3.勾股定理:兩直角邊平方和等于斜邊平方
四、利用三角函數測高
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問.
如:測不易直接測量的物體的高度、測河寬等慧世,關鍵在于構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的一般過程是:
①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.
初三下冊數學知識點總結2020篇二
半徑與弦長計算,弦心距來中間站。
以上就是初三數學下冊的全部內容,知識點1.概念 把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)解讀:(1)兩個圖形相似,其中一個圖形可以看做由另一個圖形放大或縮小得到.(2)全等形可以看成是一種特殊的相似,即不僅形狀相同。