高中數(shù)學(xué)教案全套?篇一:高中數(shù)學(xué)備課教案模板 一、預(yù)習(xí)目標(biāo) 預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的,建立實(shí)際問題與向量的聯(lián)系。 二、預(yù)習(xí)內(nèi)容 閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問題、物理問題。那么,高中數(shù)學(xué)教案全套?一起來了解一下吧。
等差數(shù)列是指從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù)的一種數(shù)列,常用A、P表示。這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。接下來是我為大家整理的高中數(shù)學(xué)等差數(shù)列教案大全,希望大家喜歡!
高中數(shù)學(xué)等差數(shù)列教案大全一
“等差數(shù)列”教學(xué)設(shè)計(jì)
一、教學(xué)內(nèi)容分析
等差數(shù)列是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書?數(shù)學(xué)5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時(shí)。
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,?數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。
二、教學(xué)目標(biāo)
1、通過本節(jié)課的學(xué)習(xí)使學(xué)生理解并掌握等差數(shù)列的概念,能用定義判斷一個(gè)數(shù)列是否為等差數(shù)列。
2、引導(dǎo)學(xué)生了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,會求等差數(shù)列的公差及通項(xiàng)公式,能在解題中靈活應(yīng)用,初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用;并在此過程中培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力。
3、在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
人生要敢于理解挑戰(zhàn),經(jīng)受得起挑戰(zhàn)的人才能夠領(lǐng)悟人生非凡的真諦,才能夠?qū)崿F(xiàn)自我無限的超越,才能夠創(chuàng)造魅力永恒的價(jià)值。接下來是我為大家整理的高中數(shù)學(xué)教案教學(xué)設(shè)計(jì),希望大家喜歡!
高中數(shù)學(xué)教案教學(xué)設(shè)計(jì)一
函數(shù)單調(diào)性與奇偶性
教學(xué)目標(biāo)
1.了解函數(shù)的棚含棚單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。
教師們通常需要教案來輔助教學(xué),那么教案應(yīng)該怎么寫呢?下面是由我為大家整理的“高中數(shù)學(xué)教案簡案(精選5篇)”,僅供參考,歡迎大家閱讀。
篇一:高中數(shù)學(xué)教案簡案精選
教學(xué)目標(biāo):
1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;
2、學(xué)會用分層抽樣的方法從總體中抽取樣本;
3、并對簡單隨機(jī)抽樣、抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。
教學(xué)重點(diǎn):
通過實(shí)例理解分層抽樣的方法。
教學(xué)難點(diǎn):
分層抽樣的步驟。
教學(xué)過程:
一、問題情境
1、復(fù)習(xí)簡單隨機(jī)抽樣、抽樣的概念、特征以及適用范圍。
2、實(shí)例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡單隨機(jī)抽樣或抽樣進(jìn)行抽樣,為什么?
指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機(jī)抽樣或抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會相等,還要注意總體中個(gè)體的層次性。
由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,
所以在各年級抽取的個(gè)體數(shù)依次是。
備課教案要怎么寫,很多學(xué)校老師努力編寫教案為了學(xué)生們的教學(xué)任務(wù),那么在這里我給大家整理“高中數(shù)學(xué)備課教案模板范文大全(精選5篇)”需要的朋友就來看看吧!
篇一:高中數(shù)學(xué)備課教案模板
一、預(yù)習(xí)目標(biāo)
預(yù)習(xí)《平面向量應(yīng)用舉例》,體會向量是一種處理幾何問題、物理問題等的,建立實(shí)際問題與向量的聯(lián)系。
二、預(yù)習(xí)內(nèi)容
閱讀課本內(nèi)容,整理例題,結(jié)合向量的運(yùn)算,解決實(shí)際的幾何問題、物理問題。另外,在思考一下幾個(gè)問題:
1、例1如果不用向量的方法,還有其他喚桐證明方法嗎?
2、利用向量方法解決平面幾何問題的“三步曲”是什么?
3、例3中,
⑴為何值時(shí),|F1|最小,最小值是多少?
⑵|F1|能等于|G|嗎?為什么?
三、提出疑惑
同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請把它填在下面的表格中疑惑點(diǎn)疑惑內(nèi)容。
課內(nèi)探究學(xué)案
一、學(xué)習(xí)內(nèi)容
1、運(yùn)用向量的有關(guān)知識(向量加減法與向量數(shù)量積的運(yùn)算法則等)解決平面幾何和解析幾何中直線或線段的平行、垂直、相等、夾角和距離等問題。
2、運(yùn)用向量的有關(guān)知識解決簡單的物理問題。
二、學(xué)習(xí)過程
探究一:
(1)向量運(yùn)算與幾何中的結(jié)論"若,則,且所在直線平行或重合"相類比,你有什么體會?
(2)舉出幾個(gè)具有線性運(yùn)算的幾何實(shí)例。
教師根據(jù)學(xué)生和自己的條件,以及高中階段學(xué)科知識為基礎(chǔ),找尋一套行之有效的教學(xué)方法。下面是由我為大家整理的“高中高一數(shù)學(xué)教案設(shè)計(jì)精選5篇”,僅供參考,歡迎大家閱讀本文。
篇一:高中高一數(shù)學(xué)教案設(shè)計(jì)精選
教學(xué)目標(biāo):
(1)通過實(shí)例,了解集合的含義,體會元素與集合的理解集合“屬于”關(guān)系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體
問題,感受集合語言的意義和作用;
教學(xué)重點(diǎn):
集合的旁裂基本概念與表示方法。
教學(xué)難點(diǎn):
運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學(xué)過程:
一、引入課題
軍訓(xùn)前學(xué)校通知:x月x日x點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對象是全體的高一學(xué)生還是個(gè)別學(xué)生
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對象的總體。
二、新課教學(xué)
(一)集合的有關(guān)概念
1.集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)總體。
以上就是高中數(shù)學(xué)教案全套的全部內(nèi)容,篇一:高中數(shù)學(xué)教案簡案精選 教學(xué)目標(biāo): 1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性; 2、學(xué)會用分層抽樣的方法從總體中抽取樣本; 3、并對簡單隨機(jī)抽樣、抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。