高一數(shù)學(xué)課本必修一?高一數(shù)學(xué)必修一的主要內(nèi)容是集合與函數(shù)概念、基本初等函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、函數(shù)與方程、函數(shù)模型及其應(yīng)用。《高中數(shù)學(xué)必修1》是2007年人民教育出版社出版的圖書,作者是人民教育出版社課題材料研究所、那么,高一數(shù)學(xué)課本必修一?一起來了解一下吧。
【 #高一#導(dǎo)語】不去耕耘,不去播種,再肥的沃土也長不出莊稼,不去奮斗,不去創(chuàng)造,再美的雹雀青春也結(jié)不出碩果。不要讓追求之舟停泊在幻想的港灣,而應(yīng)揚起奮斗的風帆,駛向現(xiàn)實生活的大海。高一頻道為正在拼搏的你整理了《高一人教版數(shù)學(xué)必修一知識點整理》,希望對你有幫助!
【一】
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性,
(2)元素的互異性,
(3)元素的無序性,
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
?注意:常用數(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
高一數(shù)學(xué)必修一第一章主要講的是有關(guān)集合的內(nèi)容,下面是我給大家?guī)淼母咭蝗私贪鏀?shù)學(xué)必修一第一章知識點整理,希望對你有幫助。
高一數(shù)學(xué)必修一第一章知識點
一、集合有關(guān)概念:
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性擾薯:
(1)元素的確定性; (2)元素的互異性; (3)元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或腔李讓者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
(Ⅰ)列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
數(shù)學(xué)是比較容易得分的科目之一,那么高一數(shù)學(xué)必修一知識點有哪些呢。以下是由我為大家整理的“高一數(shù)學(xué)必修一知識點總結(jié)”,僅供參考,歡迎大家閱讀。
第一章 集合與函數(shù)概念
一、集合有關(guān)概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元喚信素的互異性; 3.元素的無序性
說明:
(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅神銀算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排和瞎輪列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意啊:常用數(shù)集及其記法:非負整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 關(guān)于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,
如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
高中數(shù)學(xué)是很多同學(xué)們頭痛的科目,如何學(xué)好數(shù)學(xué),知識點有哪些。以下是由我為大家整理的“高一數(shù)學(xué)必修一知識點總結(jié)歸納”,僅供參考,歡迎大家閱讀。
高一數(shù)學(xué)必修一知識點總結(jié)歸納
【第一章:集合與函數(shù)概念】
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:XKb1.Com
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集:N*或N+
整數(shù)集:Z
有理數(shù)集:Q
實數(shù)集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
手做(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
高一數(shù)學(xué)必修一的主要內(nèi)容是集合與函數(shù)概念、基本初等函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、函數(shù)與方程、函數(shù)模型及其應(yīng)用。
《高中數(shù)學(xué)必修1》是2007年人民教育出版察譽社出版的圖書,作者是人民教育出版社課題材料研究所、中學(xué)數(shù)學(xué)課程教材研究開發(fā)中心。該書是高中數(shù)學(xué)學(xué)習(xí)攜襲階段順序必修辯沒兄的第一本教學(xué)輔助資料。
以上就是高一數(shù)學(xué)課本必修一的全部內(nèi)容,1.高一數(shù)學(xué)必修一知識點梳理 1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。