八年級上冊數學重點?一、勾股定理 1、勾股定理 直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。2、勾股定理的逆定理 如果三角形的三邊長a,b,c有這種關系,那么這個三角形是直角三角形。3、那么,八年級上冊數學重點?一起來了解一下吧。
初二是初中生學習非常重要的一個階段,下面我為大家總結了初二數學上冊課本內容,僅供大家參考。
初二數學知識點
1.全滾哪粗等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對緩銀稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質: 全等三角形的對應角相等、對應邊相大鎮等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”
(2)“角邊角”簡稱“ASA”
(3)“邊邊邊”簡稱“SSS”
(4)“角角邊”簡稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
數學實數知識點
1. 算術平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么正數x叫做a的算術平方根。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等于a,即x2=a,那么數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
任何一門學科的學習都需要循序漸進,數學也是如此,如果沒有扎實的基礎,就很難應對后續的課程。下面我給大家分享一些八年級上冊數學知識點提綱,希望能夠幫助大家,歡迎閱讀!
八年級上冊數學知識點提綱
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關系,那么這個三角形是直角三角形。
3、勾股數
滿足的三個正整數,稱為勾股數。
常見的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內角和定理:三角形三個內角的和等于180度。
(1)證明三角形內角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內角是互為補角。
3、三角形的外角與它不相鄰的內角關系
(1)三角形的一個外角等于和它不相鄰的兩個內角的和。
(2)三角形的一個外角大于任何一個和它不相鄰的內角。
想要了解初二數學知識點的小伙伴,趕緊來瞧瞧吧!下面由我為你精心準備了“數學八年級上冊知識點歸納”,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!
數學八年級上冊知識點歸納
一次函數
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數。
(2)正比例函數圖像特征:一些過原點的直線。
(3)圖像性質:
①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小。
(4)求正比例函數的解析式:已知一個非原點即可。
(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)。
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數。
(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)。
(8)一次函數圖像特征:一些直線。
(9)性質:
①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)
②當k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;
③當k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減小;
④當b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);
⑤當b<0時,直線y=kx+b與y軸負半軸有交點為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫一次函數的圖像:已知兩點。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。歸納整理了人教版八年級數學上冊知識點,歡迎閱讀,希望對你復習有幫助。
人教版八年級數學上冊知識點總結
第十一章 三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9.多邊形的外角:多邊形族裂漏的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
#初二#導語: 學好數學的關鍵就在于要適時適量地進行總結歸類,下是 無 整理的八年級上冊數學知識點歸納【三篇】,希望對大家有幫助。
第六章知識點
一、函數:
一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
二、自變量取值范圍
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函數的三種表示法及其優缺點
(1)關系式(解析)法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做關系式(解析)法。
(2)列表法
把廳禪自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖象法
用圖象表示函數關系的方法叫做圖象法。
四、由函數關系式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
以上就是八年級上冊數學重點的全部內容,一、函數:一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。二、自變量取值范圍 使函數有意義的自變量的取值的全體。