七年級上冊數學有理數?⑤乘法的交換律 ab=ba。⑥乘法的結合律 a(bc)=(ab)c。⑦分配律 a(b+c)=ab+ac。⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a。⑨對于不為0的有理數a,存在乘法逆元1/a,那么,七年級上冊數學有理數?一起來了解一下吧。
①加法的交換律 a+b=b+a;
②加法的結合律 a+(b+c)=(a+b)+c;
③存在數0,使 0+a=a+0=a;
④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0;
⑤乘法的交換律 ab=ba;
⑥乘法的結合律 a(bc)=(ab)c;
⑦分配律 a(b+c)=ab+ac;
⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a;
⑨對于不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
有理數的公式:
①加法的交換律 a+b=b+a。
②加法的結合律 a+(b+c)=(a+b)+c。
③存在數0,使 0+a=a+0=a。
④對任意有理數a,存在一個加法逆元,記作-a,使a+(-a)=(-a)+a=0。
⑤乘法的交換律 ab=ba。
⑥乘法的結合律 a(bc)=(ab)c。
⑦分配律 a(b+c)=ab+ac。
⑧存在乘法的單位元1≠0,使得對任意有理數a,1a=a1=a。
⑨對于不為0的有理數a,存在乘法逆元1/a,使a(1/a)=(1/a)a=1。
有理數的認識
有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。由于任何一個整數或分數都可以化為十進制循環小數,反之,每一個十進制循環小數也能化為整數或分數,因此,有理數也可以定義為十進制循環小數。
初一數學的有理數是初中數學的一大重點,所以想要考好數學,不能不學好有理數。以下是我分享給大家的初一數學有理數知識點,希望可以幫到你!
初一數學有理數知識點
一.知識框架
二.知識概念
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類:①②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時:(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減.
初一數學角的知識點
角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。
初一數學上冊主要包括四個章節的內容;下冊主要包括相六章內容。為幫助大家更好地掌握七年級數學每個章節的重要內容,我整理了一些知識點以供學習復習參考!
七年級數學上冊知識點:第一章 有理數一、知識框架
二.知識概念
1.有理數:
(1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2) 絕對值可表示為: 或 ;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數 > 0,小數-大數 < 0.
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么 的倒數是 ;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.
7. 有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
10 有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
11 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數, .
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時: (-a)n=-an或(a -b)n=-(b-a)n , 當n為正偶數時: (-a)n =an 或 (a-b)n=(b-a)n .
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
18.混合運算法則:先乘方,后乘除,最后加減.
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。
上第一章 有理數
1.1 正數和負數
正數和負數的概念
用正,負數表示具有相反意義的量
1.2 有理數
有理數的有關概念
有理數的分類
數集的概念
數軸的概念
數軸上的點與有理數之間的關系
相反數
絕對值
有理數的大小比較
1.3有理數的加減法
有理數的加法法則
有理數的加法運算律
有理數的減法法則
有理數的加減混合運算
用計算器對有理數加減混合運算進行計算
1.4有理數的乘除法
有理數的乘法法則
倒數的概念
有理數的乘法運算律
項,項的系數,合并含有相同字母的項
有理數的除法法則
1.5有理數的乘方
乘方的意義
乘方的法則
有理數的混合運算順序
科學記數法
科學記數法中的負指數
近似數和有效數字下1.1 數字與字母的乘積,這樣的代數式叫做單項式。 幾個單項似的和叫做多項式。 一個單項式中,所有字母的指數和叫做這個單向式的次數。 一個多項式中,次數最高的項的次數,叫做這個多項式的次數。 1.3 同敵數冪相乘,底數不變,指數相加。 1.4冪的乘方,底數不變,指數相乘。 積的乘方等于每個因數成方的積。 1.4同底數冪相除,底數不變,指數相減。 任何非0數的0次方,等于1 1.6 單項式與單項式相乘,把他們的系數、相同字母的冪分別相乘,其余字母連同他們的指數不變,作為積的因式。
以上就是七年級上冊數學有理數的全部內容,乘法交換律,乘法結合律,乘法分配律;5.有理數的除法:除法步驟:1、確定符號:同號正,異號負。2、絕對值:相除。除以一個不等于0的數等于乘上這個數的倒數。0除以任何一個不等于0的數都得0。四、。