數學課本八年級上冊?第十一章,三角形。第十二章,全等三角形。第十三章,軸對稱。第十四章,整式的乘法與因式分解。第十五章,分式。經過翻轉、平移、旋轉后,能夠完全重合的兩個三角形叫做全等三角形,那么,數學課本八年級上冊?一起來了解一下吧。
活著就意味必須要做點什么,請好好努力做八年級數學課本習題。我整理了關于八年級上冊數學人教版課本答案,希望對大攜襲家有幫助!
八年級上冊數學人教版課本答案(一)
第4頁
1.解:有5個三角形,分別是△ABE,△ABC,△BEC,△BDC,△EDC.
2.解:(1)不能;(2)不能;(3)能.理由略.
八年級上冊數學人教版課本答案(二)
第5頁
1.解:圖(1)中∠B為銳角,圖(2)中∠B為直角,圖(3)中∠B為鈍角,圖(1)中AD在三角形內部,圖(2)中AD為三角形的 一條直角邊,圖(3)中AD在三角形的外部.
銳角三角形的高在三角形內部,直角三角形的直角邊上的高與另一條直角邊重合,鈍角三角形有兩條高在三角形外部.
2.(1)AF(或BF) CD AC (2)∠2 ∠ABC ∠4或∠ACF
八年級上冊數學人教版課本答案(三)
習題11.1
1.解:圖中共6個三角形,分別是△ABD,
△ADE,△AEC,△ABE,AADC,△ABC.
2. 解:2種.
四根木條每三條組成一組可組成四組,分別為10,7,5;10,7,3;10,5,判譽3;7,5,3.其中7+5>10,7+3=10,5+3<10,5+3>7,所以第二組、第三組不能構成三角形辯沖兄,只有第一組、第四組能構成三角形,
3.解:如圖11-1-27所示,中線AD、高AE、角平分線AF.
4.(1) EC BC (2) ∠DAC ∠BAC (3)∠AFC (4)1/2BC.AF
5.C
6.解:(1)當長為6 cm的邊為腰時,則另一腰長為6 cm,底邊長為20-12=8(cm),
因為6+6>8,所以此時另兩邊的長為6 cm,8 cm.
(2)當長為6 cm的邊為底邊時,等腰三角形的腰長為(20-6)/2=7(cm),因為6+7>7,所以北時另兩邊的長分別為7 cm,7cm.
7.(1) 解:當等腰三角形的腰長為5時,三角形的三邊為5,5,6,因為5+5>6,所以三角形周長為5+5+6=16:
當等腰三角形的腰長為6時,三角形的三邊為6,6,5,因為6+5>6,所以三角形周長為6+6+5=17.
所以這個等腰三角形的周長為16或17;
(2)22.
8.1:2 提示:用41/2BC.AD—丟AB.CE可得.
9.解:∠1=∠2.理由如下:因為AD平分∠BAC,所以∠BAD=∠DAC.
又DE//AC,所以∠DAC=∠1.
又DF//AB,所以∠DAB=∠2.
所以∠1=∠2.
人教版 八年級 數學教材是十分重要的教學資源。教材目錄是什么知識你知道嗎?我整理了關于人教版八年級數學上冊課本的目錄,希望對大家有幫助!
人教版八年級上冊數學教材目錄
第十一章三角形
11.1與三角形有關的線段
信息技術應用 畫圖找規律
11.2 與三角形有關的角
閱讀與思考 為什么要證明
11.3 多邊形及其內角和
數學活動
小結
復習題11
第十二章全等三角形
12.1 全等三角形
12.2 三角形全等的判定
信息技術應用 探究三角形全等的條件
12.3 角的平分線的性質
數學活動
小結
復習題12
第十三章軸對稱
13.1 軸對稱
13.2 畫軸對稱圖形
信息技術應用 用軸對稱進行圖案設計
13.3 等腰三角形
實驗與探究 三角形中邊與角之間的不等關系
13.4 課題學習最短路徑問題
數學活動
小結
復習題13
第十四章整式的乘法與因式分解
14.1 整式的乘法
14.2 乘法公式
閱讀與思考 楊輝三角
14.3 因式分解
數學活動
小結
復習題14
第十五章分式
15.1 分式
15.2 分式的運算
閱讀與思考 容器中的水能倒完吧
15.3 分式方程
數學活動
小結
復習題15
部分中英文詞匯索引備差拍
人教版八年級數學上冊知識歸納
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。
做八年級數學書習題一定要認真,馬虎一點就容易出錯。下面我給大家分享一些人教版八年級上冊數學書答案,大家快來跟我一起欣賞吧。
人教版八年級上冊數學書答案(一)
第24頁
1.(1)x=65;(2)x=60; (3)x=95.
2.六邊形3.四邊形
人教版八年級上冊數學書答案(二)
第28頁
消耐1?解:因為S△ABD=1/2BD.AE=5 cm2,
AE=2 cm,所以BD=5cm. 又因為AD是BC邊上的中線,
所以DC=BD=5 cm,BC=2BD=10 cm.
2.(1)x=40;(2)x=70;(3)x=60;(4)x=100; (5)x=115.
3.多邊形的邊數:17,25;內角和:5×180°,18×180°;外角和都是360°.
4.5條,6個三角形,這些三角形內角和等于八邊形的內角和.
5.(900/7)°
6.證明:由三角形內角和定理,
可得∠A+∠1+42°=180°.
又因為∠A+10°=∠1,
所以∠A十∠A+10°+42°=180°.
則∠A=64°.
因為∠ACD=64°,所以∠A= ∠ACD.
根據內錯角相等,兩直線平行,可得AB//CD.
7.解:∵∠C+∠ABC+∠A=180°,
∴∠C+∠C+1/2∠C=180°,解得∠C=72°.又∵BD是AC邊上的高,
∴∠BDC=90°,
∴∠DBC=90°-72°=18°.
8.解:∠DAC=90°-∠C= 20°,
∠ABC=180°-∠C-∠BAC=60°.
又∵AE,BF是角平分線,
∴∠ABF=1/2∠ABC=30°,∠BAE=1/2∠BAC=25°,
∴∠AOB=180°-∠ABF-∠BAE=125°.
9.BD PC BD+PC BP+CP
10.解:因為五邊形ABCDE的內角都相等,所以∠B=∠C=((5-2)×180°)/5=108°.
又因為DF⊥AB,所以∠BFD=90°,
在四邊形BCDF中,∠CDF+∠BFD+∠B+∠C=360°,
所以∠CDF=360°-∠BFD-∠B-∠C=360°-90°-108°-108°=54°.
11.證明:(1)如圖11-4-6所示,因為BE和CF是∠ABC和∠ACB的平分線,所以∠1=1/2∠ABC,∠2=1/2∠ACB.
因為∠BGC+∠1+∠2 =180°,所凳州以BGC=180°-(∠1+∠2)=180°-1/2(∠ABC+∠ACB).
(2)因為∠ABC+∠ACB=180°-∠A,
所以由(1)得,∠BGC=180°-1/2(180°-∠A)=90°+1/2∠A.
12.證明:在四邊形ABCD中,
∠ABC+∠ADC+∠A+∠C=360°.
因為∠A=∠C=90°,
所以∠ABC+∠ADC= 360°-90°-90°=180°.
又因為BE平分∠ABC,DF平分∠ADC,
所以∠EBC=1/2∠ABC, ∠CDF=1/2∠ADC,
所以∠EBC+∠CDF=1/2(∠ABC+∠ADC)=1/2×180°=90°.
又因為∠C=90°,
所以∠DFC+∠CDF =90°.
拿粗春所以∠EBC=∠DFC.
所以BE//DF.
人教版八年級上冊數學書答案(三)
第32頁
1.解:在圖12.1-2(2)中,AB和DB,AC和DC,BC和BC是對應邊;∠A和∠D,∠ABC和∠DBC,∠ACB和∠DCB是對應角.在圖12. 1-2(3)中,AB和AD,AC和AE,BC和DE是對應邊;∠B和∠D,∠C和∠E,∠BAC和∠DAE是對應角.
2.解:相等的邊有AC=DB,OC=OB,OA=OD;
人教版八年級上冊數學課本中有一鋒鄭些練習,這些練習的答案是什么呢?我整理了關于人教版八年級上冊數學課本的答案,希望對大家有幫助!
人教版八年級上冊數學課本答案(一)
第50頁練習
銀巖頌1.提示:作∠AOB的平分線交棗祥MN于一點,則該點即為P點.(圖略)
2.證明:如圖12-3-25所示,過點P分別作PF,PG,PH垂直于直線 AC,BC,AB
垂足為F,G,H.
∵BD是△ABC中∠ABC外角的平分線,點P在BD上,∴PG=PH.同理PE=PG.∴PF=PC=PH.
故點P到三邊AB,BC,CA所在直線的距離相等。
人教版八年級上冊數學課本答案(二)
第55頁復習題
人教版八年級上冊數學課本答案(三)
第60頁練習
1.解:(1)(2)(3)(5)是軸對軸圖形,它們的對稱軸為圖中的虛線.
2.(1)(3)是軸對稱的,對稱軸和對稱點略;
第十一章,三角形。第十二章,全等三角形。第十三章,軸對稱。第十四章,整式的乘法與因式分解。第十五章,分式。
經過翻轉、平移、旋轉后,能夠完全重合的兩個三角形叫做全等三角形,而該兩個三角形的三條邊及三個角都對應相等。全等三角形指兩個全等的三角形,它們的三條邊及三個角都對應相等。全等三角形螞槐是幾何中全歷爛等之一。
根據全等轉換,兩個全等三角形經過平移、旋轉、翻折后,仍舊全等。正常來說,驗證兩個全等三角形一般用邊邊邊(SSS)、邊角邊(SAS)、角邊角(ASA)、角角邊(AAS)、和直角三角形的斜邊,直角邊(HL)來判定。
性質:
1.全等三肢物漏角形的對應角相等。
2.全等三角形的對應邊相等。
3. 能夠完全重合的頂點叫對應頂點。
4.全等三角形的對應邊上的高對應相等。
5.全等三角形的對應角的角平分線相等。
6.全等三角形的對應邊上的中線相等。
7.全等三角形面積和周長相等。
8.全等三角形的對應角的三角函數值相等。
以上就是數學課本八年級上冊的全部內容,1.(1)x=65;(2)x=60; (3)x=95.2.六邊形3.四邊形 人教版八年級上冊數學書答案(二) 第28頁 1?解:因為S△ABD=1/2BD.AE=5 cm2,AE=2 cm,所以BD=5cm. 又因為AD是BC邊上的中線。