當前位置: 首頁 > 所有學科 > 數學

老濕課堂八上數學,四年級下數學輔導

  • 數學
  • 2023-10-09

老濕課堂八上數學?2、全等三角形的表示全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、那么,老濕課堂八上數學?一起來了解一下吧。

七年數學下冊課堂

#初二#導語: 初二數學學習過程中,需要掌握好每一個重要的知識點。以下是整理的2017人教版數學八年級上冊教案【四篇】,僅供大家參考。

15.4.1因式分解

教學目標

1.知識與技能

了解因式分解的意義,以及它與整式乘法的關系.

2.過程與方法

經歷從分解因數到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的作用.

3.情感、態度與價值觀

在探索因式分解的方法的活動中,培養學生有條理的思考、表達與交流的能力,培養積極的進取意識,體會數學知識的內在含義與價值.

重、難點與關鍵

1.重點:了解因式分解的意義,感受其作用.

2.難點:整式乘法與因式分解之間的關系.

3.關鍵:通過分解因數引入到分解因式,并進行類比,加深理解.

教學方法

采用“激趣導學”的教學方法.

教學過程

一、創設情境,激趣導入

【問題牽引】

請同學們探究下面的2個問題:

問題1:720能被哪些數整除?談談你的想法.

問題2:當a=102,b=98時,求a2-b2的值.

二、豐富聯想,展示思春咐型維

探索:你會做下面的填空嗎?

1.ma+mb+mc=()();

2.x2-4=()();

3.x2-2xy+y2=()2.

【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式.

三、小組活動,共同探究

【問題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括號里,填上適當的項,扒猜使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、隨堂練習,鞏固深化

課本練習.

【探研時空】計算:993-99能被100整除嗎?

五、課堂總結,發展潛能

由學生自己進行小結,教師提出如下綱目:

1.什么叫因式分解?

2.因式簡哪分解與整式運算有何區別?

六、布置作業,專題突破

選用補充作業.

板書設計

15.4.2提公因式法

教學目標

1.知識與技能

能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

2.過程與方法

使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解.

3.情感、態度與價值觀

培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值.

重、難點與關鍵

1.重點:掌握用提公因式法把多項式分解因式.

2.難點:正確地確定多項式的公因式.

3.關鍵:提公因式法關鍵是如何找公因式.方法是:一看系數、二看字母.公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.

教學方法

采用“啟發式”教學方法.

教學過程

一、回顧交流,導入新知

【復習交流】

下列從左到右的變形是否是因式分解,為什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

問題:

1.多項式mn+mb中各項含有相同因式嗎?

2.多項式4x2-x和xy2-yz-y呢?

請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

二、小組合作,探究方法

【教師提問】多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪.

三、范例學習,應用所學

【例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2?3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2?3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用簡便的方法計算:0.84×12+12×0.6-0.44×12.

【教師活動】引導學生觀察并分析怎樣計算更為簡便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?

四、隨堂練習,鞏固深化

課本P167練習第1、2、3題.

【探研時空】

利用提公因式法計算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、課堂總結,發展潛能

1.利用提公因式法因式分解,關鍵是找準公因式.在找公因式時應注意:(1)系數要找公約數;(2)字母要找各項都有的;(3)指數要找最低次冪.

2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.

六、布置作業,專題突破

課本P170習題15.4第1、4(1)、6題.

板書設計

15.4.3公式法(一)

教學目標

1.知識與技能

會應用平方差公式進行因式分解,發展學生推理能力.

2.過程與方法

經歷探索利用平方差公式進行因式分解的過程,發展學生的逆向思維,感受數學知識的完整性.

3.情感、態度與價值觀

培養學生良好的互動交流的習慣,體會數學在實際問題中的應用價值.

重、難點與關鍵

1.重點:利用平方差公式分解因式.

2.難點:領會因式分解的解題步驟和分解因式的徹底性.

3.關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的方面上來.

教學方法

采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維.

教學過程

一、觀察探討,體驗新知

【問題牽引】

請同學們計算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教師活動】引導學生完成a2-b2=(a+b)(a-b)的同時,導出課題:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式).

二、范例學習,應用所學

【例1】把下列各式分解因式:(投影顯示或板書)

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路點撥】在觀察中發現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

【教師活動】啟發學生從平方差公式的角度進行因式分解,請5位學生上講臺板演.

【學生活動】分四人小組,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

15.4.3公式法(二)

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發展推理能力.

2.過程與方法

經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態度與價值觀

培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節課內容.

教學過程

一、回顧交流,導入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題.

【探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發展潛能

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業,專題突破

八年級上冊數學網課免費

有智慧的人未中判老必先天就很聰明,反而更多的是通過后天畢生的努力。只要勤奮努力學習八年級數學知識點,希望就在面前。我整理了關于八年級數學上知識點歸納,希望對大家有幫助!

八年級數學上知識點歸納第11-12章

第十一章 全等三角形

知識概念

1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、賣升對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。

2.全等三角形的性質: 全等三角形的對應角相等、對應邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“SAS”

(2)“角邊角”簡稱“ASA”

(3)“邊邊邊”簡稱“SSS”

(4)“角角邊”簡稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).

在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。

八年級上冊數學網課免費

知識是外在的照明,智慧是內在的照明。知識具有使用價值,而智慧具有它自身的價值。下面給大家分享一些關于八年級上冊數學一次函數知識點,希望對大家喊握山有所幫助。

八年級上冊數學一次函數知識1

知識點1 一次函數和正比例函數的概念

若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數,k≠0)的形式,則稱y是x的一次函數(x為自變量),特別地,當b=0時,稱y是x的正比例函數.

知識點2 函數的圖象

由于兩點確定一條直線,一般選取兩個特殊點:直線與y軸的交點,直線與x軸的交點。.不必一定選取這兩個特殊點.

畫正比例函數y=kx的圖象時,只要描出點(0,0),(1,k)即可.

知識點3一次函數y=kx+b(k,b為常數,k≠0)的性質

(1)k的正負決定直線的傾斜方向;

①k>0時,y的值隨x值的增大而增大;

②k﹤O時,y的值隨x值的增大而減小.

(2)|k|大小決定直線的傾斜程度,即|k|越大

①當b>0時,直線與y軸交于正半軸上;

②當b<0時,直線與y軸交于負半軸上;

③當b=0時,直線經過原點,是正比例函數.

(4)由于k,b的符號不同,直線所經過的象限也不同;

①如圖所示,當k>0,b>0時,直線經過第一、二、三象限(直線不經過第四象限);

②如圖所示,當k>0,b

③如圖所示,當k﹤O,b>0時,直線經過第一、二、四象限(直線不經過第三象限);

④如圖所示,當k﹤O,b﹤O時,直線經過第二、三、四象限(直線不經過第一象限).

(5)由于|k|決定直線與x軸相交的銳角的大小,k相同,說明這兩個銳角的大小相等,且它們是同位角,因此,它們是平行的.另外,從平移的角度也可以分析,例如:直線y=x+1可以看作是正比例函數y=x向上平移一個單位得到的.

八年級上冊數學一次函數知識2

知識點4 正比例函數y=kx(k≠0)的性質

(1)正比例函數y=kx的圖象必經過原點;

(2)當k>0時,圖象經過第一、三象限,y隨x的增大而增大;

(3)當k<0時,圖象經過第二、四象限,y隨x的增大而減小.

知識點5 點P(x0,y0)與直線y=kx+b的圖象的關系

(1)如果點P(x0,y0)在直線y=kx+b的圖象上,那么x0,y0的值必滿足解析式y=kx+b;

(2)如果x0,y0是滿足函數解析式的一對對應值,那么以x0,y0為坐標的點P(1,2)必在函數的圖象上.

例如:點P(1,2)滿足直線y=x+1,即x=1時,y=2,則點P(1,2)在直線y=x+l的圖象上;點P′(2,1)不滿足解析式y=x+1,因為當x=2時,y=3,所以皮戚點P′(2,1)不在直線y=x+l的圖象上.

知識點6 確定正比例函數及一次函數表達式的條件

(1)由于正比例函數y=kx(k≠0)中只有一個待定系數k,故只需一個條件(如一對x,y的值或一個點)就可求得k的值.

(2)由于一次函數y=kx+b(k≠0)中有兩個待定系數k,b,需要兩個獨立的條件確定兩個關于k,b的方程,求得k,b的值,這兩個條件通常是兩個點或兩對x,y的值.

知識點7 待定系數法

先設待求函數關系式(其中含有未知常數系數),再根據條件列出方程(或方程組),求出未知系數,從而得到所求結果的方法,叫做待定系數法.其中未知系數也叫待定系數.例如:函數y=kx+b中,k,b就是待定系數.

八年級上冊數學一次函數知識3

知識點8 用待定系數法 確定一次函數表達式一般步驟

(1)設函鄭中數表達式為y=kx+b;

(2)將已知點的坐標代入函數表達式,解方程(組);

(3)求出k與b的值,得到函數表達式.

思想方法小結 (1)函數方法.(2)數形結合法.

知識規律小結 (1)常數k,b對直線y=kx+b(k≠0)位置的影響.

①當b>0時,直線與y軸的正半軸相交;

當b=0時,直線經過原點;

當b﹤0時,直線與y軸的負半軸相交.

②當k,b異號時,直線與x軸正半軸相交;

當b=0時,直線經過原點;

當k,b同號時,直線與x軸負半軸相交.

③當k>O,b>O時,圖象經過第一、二、三象限;

當k>0,b=0時,圖象經過第一、三象限;

當b>O,b

八年級上冊數學一次函數知識點相關文章:

★初二數學一次函數知識點總結

★八年級數學上冊知識點歸納

★八年級數學下冊一次函數綜合復習

★初二數學上冊知識點總結歸納

★初二數學上冊知識點總結2020

★八年級上冊數學復習提綱2020

★初二一次函數經典例題

★八年級上的數學思維導圖測試題

樂樂課堂數學八年級上冊

想要了解初二數學知識點的小伙伴,趕緊來瞧瞧吧!下面由我為你精心準備了“數學八年級上冊知識點歸納”,本文僅供參考,持續關注本站將可以持續獲取更多的資訊!

數學八年級上冊知識點歸納

一次函數

(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數。

(2)正比例函數圖像特征:一些過原點的直線。

(3)圖像性質:

①當k>0時,函數y=kx的圖像經過第一、三象限,從左向右上升,即隨著x的增大y也增大;②當k<0時,函數y=kx的圖像經過第二、四象限,從左向右下降,即隨著x的增大y反而減小。

(4)求正比例函數的解析式:已知一個非原點即可。

(5)畫正比例函數圖像:經過原點和點(1,k);(或另外一個非原點)。

(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數。

(7)正比例函數是一種特殊的一次函數;(因為當b=0時,y=kx+b即為y=kx)。

(8)一次函數圖像特征:一些直線。

(9)性質:

①y=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個單位長度而得;(當b>0,向上平移;當b<0,向下平移)

②當k>0時,直線y=kx+b由左至右上升,即y隨著x的增大而增大;

③當k<0時,直線y=kx+b由左至右下降,即y隨著x的增大而減??;

④當b>0時,直線y=kx+b與y軸正半軸有交點為(0,b);

⑤當b<0時,直線y=kx+b與y軸負半軸有交點為(0,b);

(10)求一次函數的解析式:即要求k與b的值;

(11)畫一次函數的圖像:已知兩點。

六年級下冊數學輔導

八年級數學上冊教案3篇

數學教學要尊重學生個體差異,注重培養學生自主學習的意識,激發學生學習興趣。你有在數學課后寫八年級數學教案?來學習它的寫法吧。你是否在找正準備撰寫“八年級數學上冊教案”,下面我收集了相關的素材,供大家寫文參考!

八年級數學上冊教案篇1

為了更好的引入“反比例函數”的概念,并能突出重點,我采用了課本上的問題情境,同時調整了課本上提供的“思考”的問題的位置,將它放到函數概念引出之后,讓學生體會在生活中有很多反比例關系。

情境設置:

汽車從南京開往上海,全程約300km,全程所用的時間t(h)隨v(km/h)的變化而變化。

(1)你能用含v的代數式來表示t嗎?

(2)時間t是速度v的函數嗎?

設計意圖:與前面復習內容相呼應,讓同學們能在“做一做”和“議一儀”中感受兩個量之間的函數關系,同時也能注意到與所學“一次函數”,尤其是“正比例函數”的不同。從而自然地引入“反比例函數”概念。

為幫助學生更深刻的認識和掌握反比例函數概念,我引導學生將反比例函數的一般式進行變形,并安排了相應的例題。

一般式變形:(其中k均不為0)

通過對一般式的變形,讓學生從“形”上掌握“反比例函數”的概念,在結合“思考”的幾個問題,讓學生從“神”神上體驗“反比例函數”。

以上就是老濕課堂八上數學的全部內容,北師大版八年級數學上冊知識點(一)實數 定義:任何有限小數或無限循環小數都是有理數。無限不循環小數叫做無理數 (有理數總可以用有限小數或無限循環小數表示)一般地,如果一個正數x的平方等于a。

猜你喜歡

主站蜘蛛池模板: 精品视频无码一区二区三区| 亚洲国产精品成人AV无码久久综合影院 | 亚洲午夜AV无码专区在线播放| 精品久久久久久无码中文字幕漫画 | 国产精品亚洲аv无码播放| 蜜芽亚洲av无码精品色午夜| 亚洲av专区无码观看精品天堂| 欧日韩国产无码专区| 久久国产精品无码一区二区三区| 色综合久久久无码中文字幕波多| 亚洲AV无码第一区二区三区| 一本大道无码日韩精品影视| 18禁无遮挡无码国产免费网站 | 亚洲成AV人片在线观看无码| 无码中文字幕乱码一区| 人妻少妇偷人精品无码| 天堂无码久久综合东京热| 亚洲av日韩av无码av| 色综合久久无码中文字幕| 自拍偷在线精品自拍偷无码专区 | 国产亚洲精品无码专区| 精品久久久久久中文字幕无码| 成人免费无码H在线观看不卡| 亚洲AV无码专区在线厂| 亚洲熟妇无码av另类vr影视| 人妻丰满AV无码久久不卡| 中文字幕无码一区二区免费| 亚洲成a人无码av波多野按摩 | 永久免费无码日韩视频| 人妻丰满熟妇AV无码区| 亚洲另类无码专区丝袜| 亚洲av无码一区二区三区在线播放 | 国产精品毛片无码| 自慰系列无码专区| 久青草无码视频在线观看| 无码熟妇人妻AV在线影院| 国语成本人片免费av无码| 国产在线无码视频一区| 国产精品无码久久久久| 永久免费AV无码网站国产| 日日麻批免费40分钟无码|